Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Weibull distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Properties== ===Density function=== The form of the density function of the Weibull distribution changes drastically with the value of ''k''. For 0 < ''k'' < 1, the density function tends to ∞ as ''x'' approaches zero from above and is strictly decreasing. For ''k'' = 1, the density function tends to 1/''λ'' as ''x'' approaches zero from above and is strictly decreasing. For ''k'' > 1, the density function tends to zero as ''x'' approaches zero from above, increases until its mode and decreases after it. The density function has infinite negative slope at ''x'' = 0 if 0 < ''k'' < 1, infinite positive slope at ''x'' = 0 if 1 < ''k'' < 2 and null slope at ''x'' = 0 if ''k'' > 2. For ''k'' = 1 the density has a finite negative slope at ''x'' = 0. For ''k'' = 2 the density has a finite positive slope at ''x'' = 0. As ''k'' goes to infinity, the Weibull distribution converges to a [[Dirac delta distribution]] centered at ''x'' = λ. Moreover, the skewness and coefficient of variation depend only on the shape parameter. A generalization of the Weibull distribution is the [[hyperbolastic functions|hyperbolastic distribution of type III]]. ===Cumulative distribution function=== The [[cumulative distribution function]] for the Weibull distribution is :<math>F(x;k,\lambda) = 1 - e^{-(x/\lambda)^k}\,</math> for ''x'' ≥ 0, and ''F''(''x''; ''k''; λ) = 0 for ''x'' < 0. If ''x'' = λ then ''F''(''x''; ''k''; λ) = 1 − ''e''<sup>−1</sup> ≈ 0.632 for all values of ''k''. Vice versa: at ''F''(''x''; ''k''; ''λ'') = 0.632 the value of ''x'' ≈ ''λ''. The quantile (inverse cumulative distribution) function for the Weibull distribution is :<math>Q(p;k,\lambda) = \lambda(-\ln(1-p))^{1/k}</math> for 0 ≤ ''p'' < 1. The [[failure rate]] ''h'' (or hazard function) is given by :<math> h(x;k,\lambda) = {k \over \lambda} \left({x \over \lambda}\right)^{k-1}.</math> The [[Mean time between failures]] ''MTBF'' is :<math> \text{MTBF}(k,\lambda) = \lambda\Gamma(1+1/k).</math> ===Moments=== The [[moment generating function]] of the [[logarithm]] of a Weibull distributed [[random variable]] is given by<ref name=JKB>{{harvnb|Johnson|Kotz|Balakrishnan|1994}}</ref> :<math>\operatorname E\left[e^{t\log X}\right] = \lambda^t\Gamma\left(\frac{t}{k}+1\right)</math> where {{math|Γ}} is the [[gamma function]]. Similarly, the [[characteristic function (probability theory)|characteristic function]] of log ''X'' is given by :<math>\operatorname E\left[e^{it\log X}\right] = \lambda^{it}\Gamma\left(\frac{it}{k}+1\right).</math> In particular, the ''n''th [[raw moment]] of ''X'' is given by :<math>m_n = \lambda^n \Gamma\left(1+\frac{n}{k}\right).</math> The [[mean]] and [[variance]] of a Weibull [[random variable]] can be expressed as :<math>\operatorname{E}(X) = \lambda \Gamma\left(1+\frac{1}{k}\right)\,</math> and :<math>\operatorname{var}(X) = \lambda^2\left[\Gamma\left(1+\frac{2}{k}\right) - \left(\Gamma\left(1+\frac{1}{k}\right)\right)^2\right]\,.</math> The skewness is given by :<math>\gamma_1=\frac{2\Gamma_1^3-3\Gamma_1\Gamma_2+ \Gamma_3 }{[\Gamma_2-\Gamma_1^2]^{3/2}}</math> where <math>\Gamma_i=\Gamma(1+i/k)</math>, which may also be written as :<math>\gamma_1=\frac{\Gamma\left(1+\frac{3}{k}\right)\lambda^3-3\mu\sigma^2-\mu^3}{\sigma^3}</math> where the mean is denoted by {{math|μ}} and the standard deviation is denoted by {{math|σ}}. The excess [[kurtosis]] is given by :<math>\gamma_2=\frac{-6\Gamma_1^4+12\Gamma_1^2\Gamma_2-3\Gamma_2^2-4\Gamma_1 \Gamma_3 +\Gamma_4}{[\Gamma_2-\Gamma_1^2]^2}</math> where <math>\Gamma_i=\Gamma(1+i/k)</math>. The kurtosis excess may also be written as: :<math>\gamma_2=\frac{\lambda^4\Gamma(1+\frac{4}{k})-4\gamma_1\sigma^3\mu-6\mu^2\sigma^2-\mu^4}{\sigma^4}-3.</math> ===Moment generating function=== A variety of expressions are available for the moment generating function of ''X'' itself. As a [[power series]], since the raw moments are already known, one has :<math>\operatorname E\left[e^{tX}\right] = \sum_{n=0}^\infty \frac{t^n\lambda^n}{n!} \Gamma\left(1+\frac{n}{k}\right).</math> Alternatively, one can attempt to deal directly with the integral :<math>\operatorname E\left[e^{tX}\right] = \int_0^\infty e^{tx} \frac k \lambda \left(\frac{x}{\lambda}\right)^{k-1}e^{-(x/\lambda)^k}\,dx.</math> If the parameter ''k'' is assumed to be a rational number, expressed as ''k'' = ''p''/''q'' where ''p'' and ''q'' are integers, then this integral can be evaluated analytically.{{efn |See {{harv|Cheng|Tellambura|Beaulieu|2004}} for the case when ''k'' is an integer, and {{harv|Sagias|Karagiannidis|2005}} for the rational case.}} With ''t'' replaced by −''t'', one finds :<math> \operatorname E\left[e^{-tX}\right] = \frac1{ \lambda^k\, t^k} \, \frac{ p^k \, \sqrt{q/p}} {(\sqrt{2 \pi})^{q+p-2}} \, G_{p,q}^{\,q,p} \!\left( \left. \begin{matrix} \frac{1-k}{p}, \frac{2-k}{p}, \dots, \frac{p-k}{p} \\ \frac{0}{q}, \frac{1}{q}, \dots, \frac{q-1}{q} \end{matrix} \; \right| \, \frac {p^p} {\left( q \, \lambda^k \, t^k \right)^q} \right) </math> where ''G'' is the [[Meijer G-function]]. The [[characteristic function (probability theory)|characteristic function]] has also been obtained by {{harvtxt|Muraleedharan|Rao|Kurup|Nair|2007}}. The [[characteristic function (probability theory)|characteristic function]] and [[moment generating function]] of 3-parameter Weibull distribution have also been derived by {{harvtxt|Muraleedharan|Soares|2014}} by a direct approach. ===Minima=== Let <math>X_1, X_2, \ldots, X_n</math> be independent and identically distributed Weibull random variables with scale parameter <math>\lambda</math> and shape parameter <math>k</math>. If the minimum of these <math>n</math> random variables is <math>Z = \min(X_1, X_2, \ldots, X_n)</math>, then the cumulative probability distribution of <math>Z</math> is given by :<math>F(z) = 1 - e^{-n(z/\lambda)^k}.</math> That is, <math>Z</math> will also be Weibull distributed with scale parameter <math>n^{-1/k} \lambda</math> and with shape parameter <math>k</math>. === Reparametrization tricks === Fix some <math>\alpha > 0</math>. Let <math>(\pi_1, ..., \pi_n)</math> be nonnegative, and not all zero, and let <math>g_1,... , g_n</math> be independent samples of <math>\text{Weibull}(1, \alpha^{-1})</math>, then<ref>{{Cite journal |last1=Balog |first1=Matej |last2=Tripuraneni |first2=Nilesh |last3=Ghahramani |first3=Zoubin |last4=Weller |first4=Adrian |date=2017-07-17 |title=Lost Relatives of the Gumbel Trick |url=https://proceedings.mlr.press/v70/balog17a.html |journal=International Conference on Machine Learning |language=en |publisher=PMLR |pages=371–379|arxiv=1706.04161 }}</ref> * <math>\arg\min_i (g_i \pi_i^{-\alpha}) \sim \text{Categorical}\left(\frac{\pi_j}{\sum_i \pi_i}\right)_j</math> * <math>\min_i (g_i \pi_i^{-\alpha}) \sim\text{Weibull}\left( \left(\sum_i \pi_i \right)^{-\alpha}, \alpha^{-1}\right)</math>. ===Shannon entropy=== The [[entropy (information theory)|information entropy]] is given by<ref>{{Cite journal |last1=Cho |first1=Youngseuk |last2=Sun |first2=Hokeun |last3=Lee |first3=Kyeongjun |date=5 January 2015 |title=Estimating the Entropy of a Weibull Distribution under Generalized Progressive Hybrid Censoring |journal=Entropy |language=en |volume=17 |issue=1 |pages=102–122 |doi=10.3390/e17010102 |doi-access=free |bibcode=2015Entrp..17..102C |issn=1099-4300}}</ref> :<math> H(\lambda,k) = \gamma\left(1 - \frac{1}{k}\right) + \ln\left(\frac{\lambda}{k}\right) + 1 </math> where <math>\gamma</math> is the [[Euler–Mascheroni constant]]. The Weibull distribution is the [[maximum entropy distribution]] for a non-negative real random variate with a fixed [[expected value]] of ''x''<sup>''k''</sup> equal to ''λ''<sup>''k''</sup> and a fixed expected value of ln(''x''<sup>''k''</sup>) equal to ln(''λ''<sup>''k''</sup>) − <math>\gamma</math>. === Kullback–Leibler divergence === The [[Kullback–Leibler divergence]] between two Weibull distributions is given by<ref>{{Cite arXiv |eprint=1310.3713 |class=cs.IT |first1=Christian |last1=Bauckhage |title=Computing the Kullback-Leibler Divergence between two Weibull Distributions |year=2013}}</ref> : <math>D_\text{KL}( \mathrm{Weib}_1 \parallel \mathrm{Weib}_2) = \log \frac{k_1}{\lambda_1^{k_1}} - \log \frac{k_2}{\lambda_2^{k_2}} + (k_1 - k_2) \left[ \log \lambda_1 - \frac{\gamma}{k_1} \right] + \left(\frac{\lambda_1}{\lambda_2}\right)^{k_2} \Gamma \left(\frac{k_2}{k_1} + 1 \right) - 1</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)