Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Weyl algebra
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== D-module === The Weyl algebra can be constructed as a [[D-module]].{{sfn | Coutinho | 1997 | pp=600–601}} Specifically, the Weyl algebra corresponding to the polynomial ring <math>R[x_1, ..., x_n]</math> with its usual partial differential structure is precisely equal to Grothendieck's ring of differential operations <math>D_{\mathbb{A}^n_R / R}</math>.{{sfn | Coutinho | 1997 | pp=600–601}} More generally, let <math>X</math> be a smooth scheme over a ring <math>R</math>. Locally, <math>X \to R</math> factors as an étale cover over some <math>\mathbb{A}^n_R</math> equipped with the standard projection.<ref>{{Cite web |title=Section 41.13 (039P): Étale and smooth morphisms—The Stacks project |url=https://stacks.math.columbia.edu/tag/039P |access-date=2024-09-29 |website=stacks.math.columbia.edu}}</ref> Because "''étale''" means "(flat and) possessing null cotangent sheaf",<ref>{{Cite web |title=etale morphism of schemes in nLab |url=https://ncatlab.org/nlab/show/etale+morphism+of+schemes |access-date=2024-09-29 |website=ncatlab.org}}</ref> this means that every D-module over such a scheme can be thought of locally as a module over the <math>n^\text{th}</math> Weyl algebra. Let <math>R</math> be a [[commutative algebra]] over a subring <math>S</math>. The '''ring of differential operators''' <math>D_{R/S}</math> (notated <math>D_R</math> when <math>S</math> is clear from context) is inductively defined as a graded subalgebra of <math>\operatorname{End}_{S}(R)</math>: * <math>D^0_R=R</math> * <math> D^k_R=\left\{d \in \operatorname{End}_{S}(R):[d, a] \in D^{k-1}_R \text { for all } a \in R\right\} . </math> Let <math>D_R</math> be the union of all <math>D^k_R</math> for <math>k \geq 0</math>. This is a subalgebra of <math>\operatorname{End}_{S}(R)</math>. In the case <math>R = S[x_1, ..., x_n]</math>, the ring of differential operators of order <math>\leq n</math> presents similarly as in the special case <math>S = \mathbb{C}</math> but for the added consideration of "divided power operators"; these are operators corresponding to those in the complex case which stabilize <math>\mathbb{Z}[x_1, ..., x_n]</math>, but which cannot be written as integral combinations of higher-order operators, i.e. do not inhabit <math>D_{\mathbb{A}^n_\mathbb{Z} / \mathbb{Z}}</math>. One such example is the operator <math>\partial_{x_1}^{[p]} : x_1^N \mapsto {N \choose p} x_1^{N-p}</math>. Explicitly, a presentation is given by :<math>D_{S[x_1, \dots, x_\ell]/S}^n = S \langle x_1, \dots, x_\ell, \{\partial_{x_i}, \partial_{x_i}^{[2]}, \dots, \partial_{x_i}^{[n]}\}_{1 \leq i \leq \ell} \rangle</math> with the relations :<math>[x_i, x_j] = [\partial_{x_i}^{[k]}, \partial_{x_j}^{[m]}] = 0</math> :<math>[\partial_{x_i}^{[k]}, x_j] = \left \{ \begin{matrix}\partial_{x_i}^{[k-1]} & \text{if }i=j \\ 0 & \text{if } i \neq j\end{matrix}\right.</math> :<math>\partial_{x_i}^{[k]} \partial_{x_i}^{[m]} = {k+m \choose k} \partial_{x_i}^{[k+m]} ~~~~~\text{when }k+m \leq n</math> where <math>\partial_{x_i}^{[0]} = 1</math> by convention. The Weyl algebra then consists of the limit of these algebras as <math>n \to \infty</math>.<ref>{{Cite journal |last=Grothendieck |first=Alexander |date=1964 |title=Éléments de géométrie algébrique : IV. Étude locale des schémas et des morphismes de schémas, Première partie |url=http://www.numdam.org/item/PMIHES_1964__20__5_0/ |journal=Publications Mathématiques de l'IHÉS |language=en |volume=20 |pages=5–259 |issn=1618-1913}}</ref>{{Pg|location=Ch. IV.16.II}} When <math>S</math> is a field of characteristic 0, then <math>D^1_R</math> is generated, as an <math>R</math>-module, by 1 and the <math>S</math>-[[Derivation (differential algebra)|derivations]] of <math>R</math>. Moreover, <math>D_R</math> is generated as a ring by the <math>R</math>-subalgebra <math>D^1_R</math>. In particular, if <math>S = \mathbb{C}</math> and <math>R=\mathbb{C}[x_1, ..., x_n]</math>, then <math>D^1_R=R+ \sum_i R \partial_{x_i} </math>. As mentioned, <math>A_n = D_R</math>.{{sfn | Coutinho | 1995 | pp=20-24}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)