Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Woodbury matrix identity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Pseudoinverse with positive semidefinite matrices ==== In general Woodbury's identity is not valid if one or more inverses are replaced by [[Moore–Penrose inverse|(Moore–Penrose) pseudoinverses]]. However, if <math>A</math> and <math>C</math> are [[Positive semidefinite matrices|positive semidefinite]], and <math>V = U^\mathrm H</math> (implying that <math>A + UCV</math> is itself positive semidefinite), then the following formula provides a generalization:<ref>{{cite book |last1=Bernstein |first1=Dennis S. |title=Scalar, Vector, and Matrix Mathematics: Theory, Facts, and Formulas |date=2018 |publisher=Princeton University Press |location=Princeton |isbn=9780691151205 |page=638 |edition=Revised and expanded}}</ref><ref>{{cite book |last1=Schott |first1=James R. |title=Matrix analysis for statistics |date=2017 |publisher=John Wiley & Sons, Inc. |location=Hoboken, New Jersey |isbn=9781119092483 |page=219 |edition=Third}}</ref> <math display="block"> \begin{align} \left(XX^\mathrm H + YY^\mathrm H\right)^+ &= \left(ZZ^\mathrm H\right)^+ + \left(I - YZ^+\right)^\mathrm H X^{+\mathrm H} E X^+ \left(I - YZ^+\right), \\ Z &= \left(I - XX^+\right) Y, \\ E &= I - X^+Y \left(I - Z^+Z\right) F^{-1} \left(X^+Y\right)^\mathrm H, \\ F &= I + \left(I - Z^+Z\right) Y^\mathrm H \left(XX^\mathrm H\right)^+ Y \left(I - Z^+Z\right), \end{align} </math> where <math>A + UCU^\mathrm H</math> can be written as <math>XX^\mathrm H + YY^\mathrm H</math> because any positive semidefinite matrix is equal to <math>MM^\mathrm H</math> for some <math>M</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)