Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fourier transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Square-integrable functions, one-dimensional === The Fourier transforms in this table may be found in {{harvtxt|Campbell|Foster|1948}}, {{harvtxt|Erdélyi|1954}}, or {{harvtxt|Kammler|2000|loc=appendix}}. {| class="wikitable" ! !! Function !! Fourier transform {{br}} unitary, ordinary frequency !! Fourier transform {{br}} unitary, angular frequency !! Fourier transform {{br}} non-unitary, angular frequency !! Remarks |- | |<math> f(x)\,</math> |<math>\begin{align} &\hat{f}(\xi) \triangleq \hat f_1(\xi) \\&= \int_{-\infty}^\infty f(x) e^{-i 2\pi \xi x}\, dx \end{align}</math> |<math>\begin{align} &\hat{f}(\omega) \triangleq \hat f_2(\omega) \\&= \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^\infty f(x) e^{-i \omega x}\, dx \end{align}</math> |<math>\begin{align} &\hat{f}(\omega) \triangleq \hat f_3(\omega) \\&= \int_{-\infty}^\infty f(x) e^{-i \omega x}\, dx \end{align}</math> |Definitions |- |{{anchor|rect}} 201 |<math> \operatorname{rect}(a x) \,</math> |<math> \frac{1}{|a|}\, \operatorname{sinc}\left(\frac{\xi}{a}\right)</math> |<math> \frac{1}{\sqrt{2 \pi a^2}}\, \operatorname{sinc}\left(\frac{\omega}{2\pi a}\right)</math> |<math> \frac{1}{|a|}\, \operatorname{sinc}\left(\frac{\omega}{2\pi a}\right)</math> |The [[rectangular function|rectangular pulse]] and the ''normalized'' [[sinc function]], here defined as {{math|1=sinc(''x'') = {{sfrac|sin(π''x'')|π''x''}}}} |- | 202 |<math> \operatorname{sinc}(a x)\,</math> |<math> \frac{1}{|a|}\, \operatorname{rect}\left(\frac{\xi}{a} \right)\,</math> |<math> \frac{1}{\sqrt{2\pi a^2}}\, \operatorname{rect}\left(\frac{\omega}{2 \pi a}\right)</math> |<math> \frac{1}{|a|}\, \operatorname{rect}\left(\frac{\omega}{2 \pi a}\right)</math> |Dual of rule 201. The [[rectangular function]] is an ideal [[low-pass filter]], and the [[sinc function]] is the [[Anticausal system|non-causal]] impulse response of such a filter. The [[sinc function]] is defined here as {{math|1=sinc(''x'') = {{sfrac|sin(π''x'')|π''x''}}}} |- | 203 |<math> \operatorname{sinc}^2 (a x)</math> |<math> \frac{1}{|a|}\, \operatorname{tri} \left( \frac{\xi}{a} \right) </math> |<math> \frac{1}{\sqrt{2\pi a^2}}\, \operatorname{tri} \left( \frac{\omega}{2\pi a} \right) </math> |<math> \frac{1}{|a|}\, \operatorname{tri} \left( \frac{\omega}{2\pi a} \right) </math> | The function {{math|tri(''x'')}} is the [[triangular function]] |- | 204 |<math> \operatorname{tri} (a x)</math> |<math> \frac{1}{|a|}\, \operatorname{sinc}^2 \left( \frac{\xi}{a} \right) \,</math> |<math> \frac{1}{\sqrt{2\pi a^2}} \, \operatorname{sinc}^2 \left( \frac{\omega}{2\pi a} \right) </math> |<math> \frac{1}{|a|} \, \operatorname{sinc}^2 \left( \frac{\omega}{2\pi a} \right) </math> | Dual of rule 203. |- | 205 |<math> e^{- a x} u(x) \,</math> |<math> \frac{1}{a + i 2\pi \xi}</math> |<math> \frac{1}{\sqrt{2 \pi} (a + i \omega)}</math> |<math> \frac{1}{a + i \omega}</math> |The function {{math|''u''(''x'')}} is the [[Heaviside step function|Heaviside unit step function]] and {{math|''a'' > 0}}. |- | 206 |<math> e^{-\alpha x^2}\,</math> |<math> \sqrt{\frac{\pi}{\alpha}}\, e^{-\frac{(\pi \xi)^2}{\alpha}}</math> |<math> \frac{1}{\sqrt{2 \alpha}}\, e^{-\frac{\omega^2}{4 \alpha}}</math> |<math> \sqrt{\frac{\pi}{\alpha}}\, e^{-\frac{\omega^2}{4 \alpha}}</math> |This shows that, for the unitary Fourier transforms, the [[Gaussian function]] {{math|''e''<sup>−''αx''<sup>2</sup></sup>}} is its own Fourier transform for some choice of {{mvar|α}}. For this to be integrable we must have {{math|Re(''α'') > 0}}. |- | 208 |<math> e^{-a|x|} \,</math> |<math> \frac{2 a}{a^2 + 4 \pi^2 \xi^2} </math> |<math> \sqrt{\frac{2}{\pi}} \, \frac{a}{a^2 + \omega^2} </math> |<math> \frac{2a}{a^2 + \omega^{2}} </math> |For {{math|Re(''a'') > 0}}. That is, the Fourier transform of a [[Laplace distribution|two-sided decaying exponential function]] is a [[Lorentzian function]]. |- | 209 |<math> \operatorname{sech}(a x) \,</math> |<math> \frac{\pi}{a} \operatorname{sech} \left( \frac{\pi^2}{ a} \xi \right)</math> |<math> \frac{1}{a}\sqrt{\frac{\pi}{2}} \operatorname{sech}\left( \frac{\pi}{2 a} \omega \right)</math> |<math> \frac{\pi}{a}\operatorname{sech}\left( \frac{\pi}{2 a} \omega \right)</math> |[[Hyperbolic function|Hyperbolic secant]] is its own Fourier transform |- | 210 |<math> e^{-\frac{a^2 x^2}2} H_n(a x)\,</math> |<math> \frac{\sqrt{2\pi}(-i)^n}{a} e^{-\frac{2\pi^2\xi^2}{a^2}} H_n\left(\frac{2\pi\xi}a\right)</math> |<math> \frac{(-i)^n}{a} e^{-\frac{\omega^2}{2 a^2}} H_n\left(\frac \omega a\right)</math> |<math> \frac{(-i)^n \sqrt{2\pi}}{a} e^{-\frac{\omega^2}{2 a^2}} H_n\left(\frac \omega a \right)</math> |{{math|''H<sub>n</sub>''}} is the {{mvar|n}}th-order [[Hermite polynomial]]. If {{math|''a'' {{=}} 1}} then the Gauss–Hermite functions are [[eigenfunction]]s of the Fourier transform operator. For a derivation, see [[Hermite polynomials#Hermite functions as eigenfunctions of the Fourier transform|Hermite polynomial]]. The formula reduces to 206 for {{math|''n'' {{=}} 0}}. |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)