Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fourier transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Two-dimensional functions === {| class="wikitable" ! !! Function !! Fourier transform {{br}} unitary, ordinary frequency !! Fourier transform {{br}} unitary, angular frequency !! Fourier transform {{br}} non-unitary, angular frequency !! Remarks |- |400 |<math> f(x,y)</math> |<math>\begin{align}& \hat{f}(\xi_x, \xi_y)\triangleq \\ & \iint f(x,y) e^{-i 2\pi(\xi_x x+\xi_y y)}\,dx\,dy \end{align}</math> |<math>\begin{align}& \hat{f}(\omega_x,\omega_y)\triangleq \\ & \frac{1}{2 \pi} \iint f(x,y) e^{-i (\omega_x x +\omega_y y)}\, dx\,dy \end{align}</math> |<math>\begin{align}& \hat{f}(\omega_x,\omega_y)\triangleq \\ & \iint f(x,y) e^{-i(\omega_x x+\omega_y y)}\, dx\,dy \end{align}</math> |The variables {{mvar|ΞΎ<sub>x</sub>}}, {{mvar|ΞΎ<sub>y</sub>}}, {{mvar|Ο<sub>x</sub>}}, {{mvar|Ο<sub>y</sub>}} are real numbers. The integrals are taken over the entire plane. |- |401 |<math> e^{-\pi\left(a^2x^2+b^2y^2\right)}</math> |<math> \frac{1}{|ab|} e^{-\pi\left(\frac{\xi_x^2}{a^2} + \frac{\xi_y^2}{b^2}\right)}</math> |<math> \frac{1}{2\pi\,|ab|} e^{-\frac{1}{4\pi}\left(\frac{\omega_x^2}{a^2} + \frac{\omega_y^2}{b^2}\right)}</math> |<math> \frac{1}{|ab|} e^{-\frac{1}{4\pi}\left(\frac{\omega_x^2}{a^2} + \frac{\omega_y^2}{b^2}\right)}</math> |Both functions are Gaussians, which may not have unit volume. |- |402 |<math> \operatorname{circ}\left(\sqrt{x^2+y^2}\right)</math> |<math> \frac{J_1\left(2 \pi \sqrt{\xi_x^2+\xi_y^2}\right)}{\sqrt{\xi_x^2+\xi_y^2}}</math> |<math> \frac{J_1\left(\sqrt{\omega_x^2+\omega_y^2}\right)}{\sqrt{\omega_x^2+\omega_y^2}}</math> |<math> \frac{2\pi J_1\left(\sqrt{\omega_x^2+\omega_y^2}\right)}{\sqrt{\omega_x^2+\omega_y^2}}</math> |The function is defined by {{math|1=circ(''r'') = 1}} for {{math|0 β€ ''r'' β€ 1}}, and is 0 otherwise. The result is the amplitude distribution of the [[Airy disk]], and is expressed using {{math|''J''<sub>1</sub>}} (the order-1 [[Bessel function]] of the first kind).<ref>{{harvnb|Stein|Weiss|1971|loc=Thm. IV.3.3}}</ref> |- |403 |<math> \frac{1}{\sqrt{x^2+y^2}}</math> |<math> \frac{1}{\sqrt{\xi_x^2+\xi_y^2}}</math> |<math> \frac{1}{\sqrt{\omega_x^2+\omega_y^2}}</math> |<math> \frac{2\pi}{\sqrt{\omega_x^2+\omega_y^2}}</math> |This is the [[Hankel transform]] of {{math|1=''r''<sup>β1</sup>}}, a 2-D Fourier "self-transform".<ref>{{harvnb|Easton|2010}}</ref> |- |404 |<math> \frac{i}{x+i y}</math> |<math> \frac{1}{\xi_x+i\xi_y}</math> |<math> \frac{1}{\omega_x+i\omega_y}</math> |<math> \frac{2\pi}{\omega_x+i\omega_y}</math> |<!--This formula was used in constructing the ground state wavefunction of two-dimensional <math> p_x+ip_y</math> superconductors<ref>Phys. Rev. B 97 (10), 104501 (2018)</ref>--> |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)