Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fourier transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Formulas for general {{math|''n''}}-dimensional functions=== {| class="wikitable" ! !! Function !! Fourier transform {{br}} unitary, ordinary frequency !! Fourier transform {{br}} unitary, angular frequency !! Fourier transform {{br}} non-unitary, angular frequency !! Remarks |- |500 |<math> f(\mathbf x)\,</math> |<math>\begin{align} &\hat{f_1}(\boldsymbol \xi) \triangleq \\ &\int_{\mathbb{R}^n}f(\mathbf x) e^{-i 2\pi \boldsymbol \xi \cdot \mathbf x }\, d \mathbf x \end{align}</math> |<math>\begin{align} &\hat{f_2}(\boldsymbol \omega) \triangleq \\ &\frac{1}{{(2 \pi)}^\frac{n}{2}} \int_{\mathbb{R}^n} f(\mathbf x) e^{-i \boldsymbol \omega \cdot \mathbf x}\, d \mathbf x \end{align}</math> |<math>\begin{align} &\hat{f_3}(\boldsymbol \omega) \triangleq \\ &\int_{\mathbb{R}^n}f(\mathbf x) e^{-i \boldsymbol \omega \cdot \mathbf x}\, d \mathbf x \end{align}</math> | |- |501 |<math> \chi_{[0,1]}(|\mathbf x|)\left(1-|\mathbf x|^2\right)^\delta</math> |<math> \frac{\Gamma(\delta+1)}{\pi^\delta\,|\boldsymbol \xi|^{\frac{n}{2} + \delta}} J_{\frac{n}{2}+\delta}(2\pi|\boldsymbol \xi|)</math> |<math> 2^\delta \, \frac{\Gamma(\delta+1)}{\left|\boldsymbol \omega\right|^{\frac{n}{2}+\delta}} J_{\frac{n}{2}+\delta}(|\boldsymbol \omega|)</math> |<math> \frac{\Gamma(\delta+1)}{\pi^\delta} \left|\frac{\boldsymbol \omega}{2\pi}\right|^{-\frac{n}{2}-\delta} J_{\frac{n}{2}+\delta}(\!|\boldsymbol \omega|\!)</math> |The function {{math|''χ''<sub>[0, 1]</sub>}} is the [[indicator function]] of the interval {{math|[0, 1]}}. The function {{math|Γ(''x'')}} is the gamma function. The function {{math|''J''<sub>{{sfrac|''n''|2}} + ''δ''</sub>}} is a Bessel function of the first kind, with order {{math|{{sfrac|''n''|2}} + ''δ''}}. Taking {{math|1=''n'' = 2}} and {{math|1=''δ'' = 0}} produces 402.<ref>{{harvnb|Stein|Weiss|1971|loc=Thm. 4.15}}</ref> |- |502 |<math> |\mathbf x|^{-\alpha}, \quad 0 < \operatorname{Re} \alpha < n.</math> |<math> \frac{(2\pi)^{\alpha}}{c_{n, \alpha}} |\boldsymbol \xi|^{-(n - \alpha)}</math> |<math> \frac{(2\pi)^{\frac{n}{2}}}{c_{n, \alpha}} |\boldsymbol \omega|^{-(n - \alpha)}</math> |<math> \frac{(2\pi)^{n}}{c_{n, \alpha}} |\boldsymbol \omega|^{-(n - \alpha)}</math> |See [[Riesz potential]] where the constant is given by{{br}}<math>c_{n, \alpha} = \pi^\frac{n}{2} 2^\alpha \frac{\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{n - \alpha}{2}\right)}.</math>{{br}}The formula also holds for all {{math|''α'' ≠ ''n'', ''n'' + 2, ...}} by analytic continuation, but then the function and its Fourier transforms need to be understood as suitably regularized tempered distributions. See [[homogeneous distribution]].<ref group=note>In {{harvnb|Gelfand|Shilov|1964|p=363}}, with the non-unitary conventions of this table, the transform of <math>|\mathbf x|^\lambda</math> is given to be{{br}} <math>2^{\lambda+n}\pi^{\tfrac12 n}\frac{\Gamma\left(\frac{\lambda+n}{2}\right)}{\Gamma\left(-\frac{\lambda}{2}\right)}|\boldsymbol\omega|^{-\lambda-n}</math>{{br}}from which this follows, with <math>\lambda=-\alpha</math>.</ref> |- |503 |<math> \frac{1}{\left|\boldsymbol \sigma\right|\left(2\pi\right)^\frac{n}{2}} e^{-\frac{1}{2} \mathbf x^{\mathrm T} \boldsymbol \sigma^{-\mathrm T} \boldsymbol \sigma^{-1} \mathbf x}</math> |<math> e^{-2\pi^2 \boldsymbol \xi^{\mathrm T} \boldsymbol \sigma \boldsymbol \sigma^{\mathrm T} \boldsymbol \xi} </math> |<math> (2\pi)^{-\frac{n}{2}} e^{-\frac{1}{2} \boldsymbol \omega^{\mathrm T} \boldsymbol \sigma \boldsymbol \sigma^{\mathrm T} \boldsymbol \omega} </math> |<math> e^{-\frac{1}{2} \boldsymbol \omega^{\mathrm T} \boldsymbol \sigma \boldsymbol \sigma^{\mathrm T} \boldsymbol \omega} </math> |This is the formula for a [[multivariate normal distribution]] normalized to 1 with a mean of 0. Bold variables are vectors or matrices. Following the notation of the aforementioned page, {{math|'''Σ''' {{=}} '''σ''' '''σ'''<sup>T</sup>}} and {{math|'''Σ'''<sup>−1</sup> {{=}} '''σ'''<sup>−T</sup> '''σ'''<sup>−1</sup>}} |- |504 |<math> e^{-2\pi\alpha|\mathbf x|}</math> | <math>\frac{c_n\alpha}{\left(\alpha^2+|\boldsymbol{\xi}|^2\right)^\frac{n+1}{2}}</math> |<math>\frac{c_n (2\pi)^{\frac{n+2}{2}} \alpha}{\left(4\pi^2\alpha^2+|\boldsymbol{\omega}|^2\right)^\frac{n+1}{2}}</math> |<math>\frac{c_n (2\pi)^{n+1} \alpha}{\left(4\pi^2\alpha^2+|\boldsymbol{\omega}|^2\right)^\frac{n+1}{2}}</math> |Here<ref>{{harvnb|Stein|Weiss|1971|p=6}}</ref>{{br}}<math>c_n=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^\frac{n+1}{2}},</math> {{math|Re(''α'') > 0}} |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)