Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
1963 in science
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Mathematics== * [[Paul Cohen]] uses [[Forcing (mathematics)|forcing]] to prove that the [[continuum hypothesis]] and the [[axiom of choice]] are [[Independence (mathematical logic)|independent]] from [[Zermelo–Fraenkel set theory]]. * [[Walter Feit]] and [[John G. Thompson]] state the [[Feit–Thompson theorem]].<ref>{{cite journal|last1=Feit|first1=Walter|last2=Thompson|first2=John G.|title=Solvability of groups of odd order|url=http://projecteuclid.org/Dienst/UI/1.0/Journal?authority=euclid.pjm&issue=1103053941|mr=0166261|year=1963|journal=[[Pacific Journal of Mathematics]]|volume=13|issue=3|pages=775–1029|doi=10.2140/pjm.1963.13.775|doi-access=free}}</ref> * [[Edward Lorenz]] publishes his discovery of the '[[butterfly effect]]', significant in the development of [[chaos theory]].<ref>{{cite journal|last=Lorenz|first=Edward N.|title=Deterministic Nonperiodic Flow|journal=[[Journal of the Atmospheric Sciences]]|date=March 1963|volume=20|issue=2|pages=130–141|doi=10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2|bibcode=1963JAtS...20..130L|doi-access=free}}</ref> * [[Atiyah–Singer index theorem]] announced by [[Michael Atiyah]] and [[Isadore Singer]].<ref>{{cite journal|last1=Atiyah|first1=Michael F.|last2=Singer|first2=Isadore M.|title=The Index of Elliptic Operators on Compact Manifolds|journal=[[Bulletin of the American Mathematical Society]]|volume= 69|pages=422–433|year=1963|doi=10.1090/S0002-9904-1963-10957-X|issue=3|doi-access=free}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)