Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Adiabatic process
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Derivation of ''P''–''V'' relation for adiabatic compression and expansion=== The definition of an adiabatic process is that heat transfer to the system is zero, {{math|1=''δQ'' = 0}}. Then, according to the first law of thermodynamics, {{NumBlk||<math display="block"> d U + \delta W = \delta Q = 0, </math>|{{EquationRef|a1}}}} where {{math|''dU''}} is the change in the internal energy of the system and {{math|''δW''}} is work done ''by'' the system. Any work ({{math|''δW''}}) done must be done at the expense of internal energy {{math|''U''}}, since no heat {{math|''δQ''}} is being supplied from the surroundings. Pressure–volume work {{math|''δW''}} done ''by'' the system is defined as {{NumBlk||<math display="block"> \delta W = P \, dV. </math>|{{EquationRef|a2}}}} However, {{math|''P''}} does not remain constant during an adiabatic process but instead changes along with {{math|''V''}}. It is desired to know how the values of {{math|''dP''}} and {{math|''dV''}} relate to each other as the adiabatic process proceeds. For an ideal gas (recall ideal gas law {{math|1=''PV'' = ''nRT''}}) the internal energy is given by {{NumBlk||<math display="block"> U = \alpha n R T = \alpha P V, </math>|{{EquationRef|a3}}}} where {{math|''α''}} is the number of degrees of freedom divided by 2, {{math|''R''}} is the [[universal gas constant]] and {{math|''n''}} is the number of moles in the system (a constant). Differentiating equation (a3) yields {{NumBlk||<math display="block">\begin{align} d U &= \alpha n R \, dT\\ & = \alpha \, d (P V)\\ & = \alpha (P \, dV + V \, dP). \end{align}</math>|{{EquationRef|a4}}}} Equation (a4) is often expressed as {{math|1=''dU'' = ''nC<sub>V</sub> dT''}} because {{math|1=''C<sub>V</sub>'' = ''αR''}}. Now substitute equations (a2) and (a4) into equation (a1) to obtain <math display="block"> -P \, dV = \alpha P \, dV + \alpha V \, dP,</math> factorize {{math|−''P'' ''dV''}}: <math display="block"> -(\alpha + 1) P \, dV = \alpha V \, dP,</math> and divide both sides by {{math|''PV''}}: <math display="block"> -(\alpha + 1) \frac{dV}{V} = \alpha \frac{dP}{P}. </math> After integrating the left and right sides from {{math|''V''<sub>0</sub>}} to {{math|''V''}} and from {{math|''P''<sub>0</sub>}} to {{math|''P''}} and changing the sides respectively, <math display="block"> \ln \left( \frac{P}{P_0} \right) = -\frac{\alpha + 1}{\alpha} \ln \left( \frac{V}{V_0} \right). </math> Exponentiate both sides, substitute {{math|{{sfrac|''α'' + 1|''α''}}}} with {{math|''γ''}}, the heat capacity ratio <math display="block"> \left( \frac{P}{P_0} \right) = \left( \frac{V}{V_0} \right)^{-\gamma}, </math> and eliminate the negative sign to obtain <math display="block"> \left( \frac{P}{P_0} \right) = \left( \frac{V_0}{V} \right)^\gamma. </math> Therefore, <math display="block"> \left( \frac{P}{P_0} \right) \left( \frac{V}{V_0} \right)^\gamma = 1,</math> and <math display="block"> P_0 V_0^\gamma = P V^\gamma = \mathrm{constant}. </math> {{NumBlk||<math display="block"> \Delta U = \alpha R nT_2 - \alpha R nT_1 = \alpha Rn \Delta T. </math>|{{EquationRef|b1}}}} At the same time, the work done by the pressure–volume changes as a result from this process, is equal to {{NumBlk||<math display="block"> W = \int_{V_1}^{V_2}P \,dV. </math>|{{EquationRef|b2}}}} Since we require the process to be adiabatic, the following equation needs to be true {{NumBlk||<math display="block"> \Delta U + W = 0. </math>|{{EquationRef|b3}}}} By the previous derivation, {{NumBlk||<math display="block"> P V^\gamma = \text{constant} = P_1 V_1^\gamma. </math>|{{EquationRef|b4}}}} Rearranging (b4) gives <math display="block"> P = P_1 \left(\frac{V_1}{V} \right)^\gamma. </math> Substituting this into (b2) gives <math display="block"> W = \int_{V_1}^{V_2} P_1 \left(\frac{V_1}{V} \right)^\gamma \,dV. </math> Integrating, we obtain the expression for work, <math display="block">\begin{align} W = P_1 V_1^\gamma \frac{V_2^{1-\gamma} - V_1^{1-\gamma}}{1 - \gamma} \\ &= \frac{P_2 V_2 - P_1 V_1}{1 - \gamma}. \end{align}</math> Substituting {{math|1=''γ'' = {{sfrac|''α'' + 1|''α''}}}} in the second term, <math display="block"> W = -\alpha P_1 V_1^\gamma \left( V_2^{1-\gamma} - V_1^{1-\gamma} \right). </math> Rearranging, <math display="block"> W = -\alpha P_1 V_1 \left( \left( \frac{V_2}{V_1} \right)^{1-\gamma} - 1 \right). </math> Using the ideal gas law and assuming a constant molar quantity (as often happens in practical cases), <math display="block"> W = -\alpha n R T_1 \left( \left( \frac{V_2}{V_1} \right)^{1-\gamma} - 1 \right). </math> By the continuous formula, <math display="block"> \frac{P_2}{P_1} = \left(\frac{V_2}{V_1}\right)^{-\gamma}, </math> or <math display="block"> \left(\frac{P_2}{P_1}\right)^{-\frac{1}{\gamma}} = \frac{V_2}{V_1}. </math> Substituting into the previous expression for {{math|''W''}}, <math display="block"> W = -\alpha n R T_1 \left( \left( \frac{P_2}{P_1} \right)^{\frac{\gamma-1}{\gamma}} - 1 \right). </math> Substituting this expression and (b1) in (b3) gives <math display="block"> \alpha n R (T_2 - T_1) = \alpha n R T_1 \left( \left( \frac{P_2}{P_1} \right)^{\frac{\gamma-1}{\gamma}} - 1 \right). </math> Simplifying, <math display="block">\begin{align} T_2 - T_1 &= T_1 \left( \left( \frac{P_2}{P_1} \right)^{\frac{\gamma-1}{\gamma}} - 1 \right), \\ \frac{T_2}{T_1} - 1 &= \left( \frac{P_2}{P_1} \right)^{\frac{\gamma-1}{\gamma}} - 1, \\ T_2 &= T_1 \left( \frac{P_2}{P_1} \right)^{\frac{\gamma-1}{\gamma}}. \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)