Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Analytic geometry
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Polar coordinates (in a plane)=== {{main|Polar coordinate system}} In [[polar coordinates]], every point of the plane is represented by its distance ''r'' from the origin and its [[angle]] ''θ'', with ''θ'' normally measured counterclockwise from the positive ''x''-axis. Using this notation, points are typically written as an ordered pair (''r'', ''θ''). One may transform back and forth between two-dimensional Cartesian and polar coordinates by using these formulae: <math display="block">x = r\, \cos\theta,\, y = r\, \sin\theta; \, r = \sqrt{x^2+y^2},\, \theta = \arctan(y/x).</math> This system may be generalized to three-dimensional space through the use of [[Cylindrical coordinates|cylindrical]] or [[Spherical coordinates|spherical]] coordinates.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)