Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Antimatter rocket
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Modified relativistic rocket equation=== The loss of mass specific to antimatter annihilation requires a modification of the relativistic rocket equation given as<ref name=AIAA-98-3403>[http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/20238/1/98-1132.pdf ''Evaluation of Propulsion Options for Interstellar Missions''] {{webarchive|url=https://web.archive.org/web/20140508061651/http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/20238/1/98-1132.pdf |date=2014-05-08 }} Robert H. Frisbee, Stephanie D. Leifer, AIAA Paper 98-3403, July 13β15, 1998.</ref> {{NumBlk|:|<math>\frac {M_0}{M_1} = \left(\frac{1+ \frac{\Delta v}{c}}{1- \frac{\Delta v}{c}}\right)^{\frac{c}{2 I_{\text{sp}}}} </math>|{{EquationRef|I}}}} where <math>c</math> is the speed of light, and <math>I_{\text{sp}}</math> is the specific impulse (i.e. <math>I_{\text{sp}}</math>=0.69<math>c</math>). The derivative form of the equation is<ref name=AIAA-2003-4696/> {{NumBlk|:|<math>\frac {dM_{\text{ship}}}{M_{\text{ship}}}= \frac {-dv ( 1 - I_{\text{sp}} \frac {v}{c^2})} {(1 - \frac {v^2}{c^2})(-\frac {I_{\text{sp}} v^2}{c^2} + (1 - a) v + a I_{\text{sp}})} </math>|{{EquationRef|II}}}} where <math>M_{\text{ship}}</math> is the non-relativistic (rest) mass of the rocket ship, and <math>a</math> is the fraction of the original (on board) propellant mass (non-relativistic) remaining after annihilation (i.e., <math>a</math>=0.22 for the charged pions). {{EquationNote|Eq.II}} is difficult to integrate analytically. If it is assumed that <math>v \sim I_{\text{sp}}</math>, such that <math>(1 - \frac {I_{\text{sp}} v}{c^2}) \sim (1 - \frac {v^2}{c^2})</math> then the resulting equation is {{NumBlk|:|<math>\frac {dM_{\text{ship}}}{M_{\text{ship}}}= \frac {-dv}{(-\frac {I_{\text{sp}} v^2}{c^2} + (1 - a) v + a I_{\text{sp}})} </math>|{{EquationRef|III}}}} {{EquationNote|Eq.III}} can be integrated and the integral evaluated for <math>M_0</math> and <math>M_1</math>, and initial and final velocities (<math>v_i = 0</math> and <math>v_f = \Delta v</math>). The resulting relativistic rocket equation with loss of propellant is<ref name=AIAA-2003-4696/><ref name=AIAA-98-3403/> {{NumBlk|:|<math>\frac{M_0}{M_1}=\left(\frac{(-2I_{\text{sp}}\Delta v/c^2+1-a-\sqrt{(1-a)^2+4aI_{\text{sp}}^2/c^2})(1-a+\sqrt{(1-a)^2+4aI_{\text{sp}}^2/c^2})}{(-2I_{\text{sp}}\Delta v/c^2+1-a+\sqrt{(1-a)^2+4aI_{\text{sp}}^2/c^2})(1-a-\sqrt{(1-a)^2+4aI_{\text{sp}}^2/c^2})}\right)^{\frac{1}{\sqrt{(1-a)^2+4aI_{\text{sp}}^2/c^2}}} </math>|{{EquationRef|IV}}}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)