Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Antiprism
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Derivation ==== The circumradius of the horizontal circumcircle of the regular <math>n</math>-gon at the base is :<math> R(0) = \frac{l}{2\sin\frac{\pi}{n}}. </math> The vertices at the base are at :<math>\left(\begin{array}{c}R(0)\cos\frac{2\pi m}{n} \\ R(0)\sin\frac{2\pi m}{n} \\ 0\end{array}\right),\quad m=0..n-1;</math> the vertices at the top are at :<math>\left(\begin{array}{c}R(0)\cos\frac{2\pi (m+1/2)}{n}\\R(0)\sin\frac{2\pi (m+1/2)}{n}\\h\end{array}\right), \quad m=0..n-1.</math> Via linear interpolation, points on the outer triangular edges of the antiprism that connect vertices at the bottom with vertices at the top are at :<math>\left(\begin{array}{c} \frac{R(0)}{h}[(h-z)\cos\frac{2\pi m}{n}+z\cos\frac{\pi(2m+1)}{n}]\\ \frac{R(0)}{h}[(h-z)\sin\frac{2\pi m}{n}+z\sin\frac{\pi(2m+1)}{n}]\\ \\z\end{array}\right), \quad 0\le z\le h, m=0..n-1</math> and at :<math>\left(\begin{array}{c} \frac{R(0)}{h}[(h-z)\cos\frac{2\pi (m+1)}{n}+z\cos\frac{\pi(2m+1)}{n}]\\ \frac{R(0)}{h}[(h-z)\sin\frac{2\pi (m+1)}{n}+z\sin\frac{\pi(2m+1)}{n}]\\ \\z\end{array}\right), \quad 0\le z\le h, m=0..n-1.</math> By building the sums of the squares of the <math>x</math> and <math>y</math> coordinates in one of the previous two vectors, the squared circumradius of this section at altitude <math>z</math> is :<math> R(z)^2 = \frac{R(0)^2}{h^2}[h^2-2hz+2z^2+2z(h-z)\cos\frac{\pi}{n}]. </math> The horizontal section at altitude <math>0\le z\le h</math> above the base is a <math>2n</math>-gon (truncated <math>n</math>-gon) with <math>n</math> sides of length <math>l_1(z)=l(1-z/h)</math> alternating with <math>n</math> sides of length <math>l_2(z)=lz/h</math>. (These are derived from the length of the difference of the previous two vectors.) It can be dissected into <math>n</math> isoceless triangles of edges <math>R(z),R(z)</math> and <math>l_1</math> (semiperimeter <math>R(z)+l_1(z)/2</math>) plus <math>n</math> isoceless triangles of edges <math>R(z),R(z)</math> and <math>l_2(z)</math> (semiperimeter <math>R(z)+l_2(z)/2</math>). According to Heron's formula the areas of these triangles are :<math> Q_1(z) = \frac{R(0)^2}{h^2} (h-z)\left[(h-z)\cos\frac{\pi}{n}+z\right] \sin\frac{\pi}{n} </math> and :<math> Q_2(z) = \frac{R(0)^2}{h^2} z\left[z\cos\frac{\pi}{n}+h-z\right] \sin\frac{\pi}{n} . </math> The area of the section is <math>n[Q_1(z)+Q_2(z)]</math>, and the volume is :<math> V = n\int_0^h [Q_1(z)+Q_2(z)] dz = \frac{nh}{3}R(0)^2\sin\frac{\pi}{n}(1+2\cos\frac{\pi}{n}) = \frac{nh}{12}l^2\frac{1+2\cos\frac{\pi}{n}}{\sin\frac{\pi}{n}} . </math> The volume of a right {{mvar|n}}-gonal [[Prism (geometry)|prism]] with the same {{mvar|l}} and {{mvar|h}} is: <math display=block>V_{\mathrm{prism}}=\frac{nhl^2}{4} \cot\frac{\pi}{n}</math> which is smaller than that of an antiprism.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)