Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Arithmetic–geometric mean
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Applications== ===The number ''π''=== According to the [[Gauss–Legendre algorithm]],<ref>{{cite journal |first=Eugene |last=Salamin |author-link=Eugene Salamin (mathematician) |title=Computation of π using arithmetic–geometric mean |journal=[[Mathematics of Computation]] |url=https://link.springer.com/chapter/10.1007/978-3-319-32377-0_1 |volume=30 |issue=135 |year=1976 <!-- |month=July -->|pages=565–570 |doi=10.2307/2005327 |jstor=2005327 |mr=0404124 }}</ref> <math display=block>\pi = \frac{4\,M(1,1/\sqrt{2})^2} {1 - \displaystyle\sum_{j=1}^\infty 2^{j+1} c_j^2} ,</math> where <math display=block>c_j = \frac{1}{2}\left(a_{j-1}-g_{j-1}\right) ,</math> with <math>a_0=1</math> and <math>g_0=1/\sqrt{2}</math>, which can be computed without loss of precision using <math display=block>c_j = \frac{c_{j-1}^2}{4a_j} .</math> ===Complete elliptic integral ''K''(sin''α'')=== Taking <math>a_0 = 1</math> and <math>g_0 = \cos\alpha</math> yields the AGM <math display=block>M(1,\cos\alpha) = \frac{\pi}{2K(\sin \alpha)} ,</math> where {{math|''K''(''k'')}} is a complete [[elliptic integral|elliptic integral of the first kind]]: <math display=block>K(k) = \int_0^{\pi/2}(1 - k^2 \sin^2\theta)^{-1/2} \, d\theta.</math> That is to say that this [[quarter period]] may be efficiently computed through the AGM, <math display=block>K(k) = \frac{\pi}{2M(1,\sqrt{1-k^2})} .</math> ===Other applications=== Using this property of the AGM along with the ascending transformations of [[John Landen]],<ref>{{cite journal |first=John |last=Landen |title=An investigation of a general theorem for finding the length of any arc of any conic hyperbola, by means of two elliptic arcs, with some other new and useful theorems deduced therefrom |journal=[[Philosophical Transactions of the Royal Society]] |volume=65 |year=1775 |pages=283–289 |doi=10.1098/rstl.1775.0028|s2cid=186208828 }}</ref> [[Richard P. Brent]]<ref>{{cite journal |first=Richard P. |last=Brent |title=Fast Multiple-Precision Evaluation of Elementary Functions |journal=[[Journal of the ACM]] |volume=23 |issue=2 |year=1976 |pages=242–251 |doi=10.1145/321941.321944 |mr=0395314 |citeseerx=10.1.1.98.4721 |s2cid=6761843 |url=https://link.springer.com/chapter/10.1007/978-3-319-32377-0_2 }}</ref> suggested the first AGM algorithms for the fast evaluation of elementary [[transcendental function]]s ({{math|''e''<sup>''x''</sup>}}, {{math|cos ''x''}}, {{math|sin ''x''}}). Subsequently, many authors went on to study the use of the AGM algorithms.<ref>{{cite book |author1-link=Jonathan Borwein |first1=Jonathan M. |last1=Borwein |author2-link=Peter Borwein |first2=Peter B. |last2=Borwein |title=Pi and the AGM |publisher=Wiley |place=New York |year=1987 |isbn=0-471-83138-7 |mr=0877728 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)