Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Associated Legendre polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==The first few associated Legendre functions== [[File:Mplwp legendreP04a0.svg|thumb|300px|Associated Legendre functions for ''m'' = 0]] [[File:Mplwp legendreP15a1.svg|thumb|300px|Associated Legendre functions for ''m'' = 1]] [[File:Mplwp legendreP26a2.svg|thumb|300px|Associated Legendre functions for ''m'' = 2]] The first few associated Legendre functions, including those for negative values of ''m'', are: <math display="block">P_{0}^{0}(x)=1</math> <math display="block">\begin{align} P_{1}^{-1}(x)&=-\tfrac{1}{2}P_{1}^{1}(x) \\ P_{1}^{0}(x)&=x \\ P_{1}^{1}(x)&=-(1-x^2)^{1/2} \end{align}</math> <math display="block">\begin{align} P_{2}^{-2}(x)&=\tfrac{1}{24}P_{2}^{2}(x) \\ P_{2}^{-1}(x)&=-\tfrac{1}{6}P_{2}^{1}(x) \\ P_{2}^{0}(x)&=\tfrac{1}{2}(3x^{2}-1) \\ P_{2}^{1}(x)&=-3x(1-x^2)^{1/2} \\ P_{2}^{2}(x)&=3(1-x^2) \end{align}</math> <math display="block">\begin{align} P_{3}^{-3}(x)&=-\tfrac{1}{720}P_{3}^{3}(x) \\ P_{3}^{-2}(x)&=\tfrac{1}{120}P_{3}^{2}(x) \\ P_{3}^{-1}(x)&=-\tfrac{1}{12}P_{3}^{1}(x) \\ P_{3}^{0}(x)&=\tfrac{1}{2}(5x^3-3x) \\ P_{3}^{1}(x)&=\tfrac{3}{2}(1-5x^{2})(1-x^2)^{1/2} \\ P_{3}^{2}(x)&=15x(1-x^2) \\ P_{3}^{3}(x)&=-15(1-x^2)^{3/2} \end{align}</math> <math display="block">\begin{align} P_{4}^{-4}(x)&=\tfrac{1}{40320}P_{4}^{4}(x) \\ P_{4}^{-3}(x)&=-\tfrac{1}{5040}P_{4}^{3}(x) \\ P_{4}^{-2}(x)&=\tfrac{1}{360}P_{4}^{2}(x) \\ P_{4}^{-1}(x)&=-\tfrac{1}{20}P_{4}^{1}(x) \\ P_{4}^{0}(x)&=\tfrac{1}{8}(35x^{4}-30x^{2}+3) \\ P_{4}^{1}(x)&=-\tfrac{5}{2}(7x^3-3x)(1-x^2)^{1/2} \\ P_{4}^{2}(x)&=\tfrac{15}{2}(7x^2-1)(1-x^2) \\ P_{4}^{3}(x)&= - 105x(1-x^2)^{3/2} \\ P_{4}^{4}(x)&=105(1-x^2)^{2} \end{align}</math> <!-- <math display="block">\begin{align} P_{5}^{-5}(x)&={1\over 3840}\left(\sqrt{1-x^2}\right)^{5} \\ P_{5}^{-4}(x)&={1\over 384}\left(\sqrt{1-x^2}\right)^{4}x \\ P_{5}^{-3}(x)&={1\over 384}\left(\sqrt{1-x^2}\right)^{3}(9x^{2}-1) \\ P_{5}^{-2}(x)&={1\over 16}\left(\sqrt{1-x^2}\right)^{2}(3x^{3}-1x) \\ P_{5}^{-1}(x)&={1\over 16}\left(\sqrt{1-x^2}\right)(21x^{4}-14x^{2}+1) \\ P_{5}^{0}(x)&={1\over 8}(63x^{5}-70x^{3}+15x) \\ P_{5}^{1}(x)&={-15\over 8}\left(\sqrt{1-x^2}\right)(21x^{4}-14x^{2}+1) \\ P_{5}^{2}(x)&={105\over 2}\left(\sqrt{1-x^2}\right)^{2}(3x^{3}-1x) \\ P_{5}^{3}(x)&={-105\over 2}\left(\sqrt{1-x^2}\right)^{3}(9x^{2}-1) \\ P_{5}^{4}(x)&=945\left(\sqrt{1-x^2}\right)^{4}x \\ P_{5}^{5}(x)&=-945\left(\sqrt{1-x^2}\right)^{5} \end{align}</math> <math display="block">\begin{align} P_{6}^{-6}(x)={1\over 46080}\left(\sqrt{1-x^2}\right)^{6} \\ P_{6}^{-5}(x)={1\over 3840}\left(\sqrt{1-x^2}\right)^{5}x \\ P_{6}^{-4}(x)={1\over 3840}\left(\sqrt{1-x^2}\right)^{4}(11x^{2}-1) \\ P_{6}^{-3}(x)={1\over 384}\left(\sqrt{1-x^2}\right)^{3}(11x^{3}-3x) \\ P_{6}^{-2}(x)={1\over 128}\left(\sqrt{1-x^2}\right)^{2}(33x^{4}-18x^{2}+1) \\ P_{6}^{-1}(x)={1\over 16}\left(\sqrt{1-x^2}\right)(33x^{5}-30x^{3}+5x) \\ P_{6}^{0}(x)={1\over 16}(231x^{6}-315x^{4}+105x^{2}-5) \\ P_{6}^{1}(x)={-21\over 8}\left(\sqrt{1-x^2}\right)(33x^{5}-30x^{3}+5x) \\ P_{6}^{2}(x)={105\over 8}\left(\sqrt{1-x^2}\right)^{2}(33x^{4}-18x^{2}+1) \\ P_{6}^{3}(x)={-315\over 2}\left(\sqrt{1-x^2}\right)^{3}(11x^{3}-3x) \\ P_{6}^{4}(x)={945\over 2}\left(\sqrt{1-x^2}\right)^{4}(11x^{2}-1) \\ P_{6}^{5}(x)=-10395\left(\sqrt{1-x^2}\right)^{5}x \\ P_{6}^{6}(x)=10395\left(\sqrt{1-x^2}\right)^{6} \end{align}</math> <math display="block">\begin{align} P_{7}^{-7}(x)&={1\over 645120}\left(\sqrt{1-x^2}\right)^{7} \\ P_{7}^{-6}(x)&={1\over 46080}\left(\sqrt{1-x^2}\right)^{6}x \\ P_{7}^{-5}(x)&={1\over 46080}\left(\sqrt{1-x^2}\right)^{5}(13x^{2}-1) \\ P_{7}^{-4}(x)&={1\over 3840}\left(\sqrt{1-x^2}\right)^{4}(13x^{3}-3x) \\ P_{7}^{-3}(x)&={1\over 3840}\left(\sqrt{1-x^2}\right)^{3}(143x^{4}-66x^{2}+3) \\ P_{7}^{-2}(x)&={1\over 384}\left(\sqrt{1-x^2}\right)^{2}(143x^{5}-110x^{3}+15x) \\ P_{7}^{-1}(x)&={1\over 128}\left(\sqrt{1-x^2}\right)(429x^{6}-495x^{4}+135x^{2}-5) \\ P_{7}^{0}(x)&={1\over 16}(429x^{7}-693x^{5}+315x^{3}-35x) \\ P_{7}^{1}(x)&={-7\over 16}\left(\sqrt{1-x^2}\right)(429x^{6}-495x^{4}+135x^{2}-5) \\ P_{7}^{2}(x)&={63\over 8}\left(\sqrt{1-x^2}\right)^{2}(143x^{5}-110x^{3}+15x) \\ P_{7}^{3}(x)&={-315\over 8}\left(\sqrt{1-x^2}\right)^{3}(143x^{4}-66x^{2}+3) \\ P_{7}^{4}(x)&={3465\over 2}\left(\sqrt{1-x^2}\right)^{4}(13x^{3}-3x) \\ P_{7}^{5}(x)&={-10395\over 2}\left(\sqrt{1-x^2}\right)^{5}(13x^{2}-1) \\ P_{7}^{6}(x)&=135135\left(\sqrt{1-x^2}\right)^{6}x \\ P_{7}^{7}(x)&=-135135\left(\sqrt{1-x^2}\right)^{7} \end{align}</math> <math display="block">\begin{align} P_{8}^{-8}(x)={1\over 10321920}\left(\sqrt{1-x^2}\right)^{8} \\ P_{8}^{-7}(x)&={1\over 645120}\left(\sqrt{1-x^2}\right)^{7}x \\ P_{8}^{-6}(x)&={1\over 645120}\left(\sqrt{1-x^2}\right)^{6}(15x^{2}-1) \\ P_{8}^{-5}(x)&={1\over 15360}\left(\sqrt{1-x^2}\right)^{5}(5x^{3}-1x) \\ P_{8}^{-4}(x)&={1\over 15360}\left(\sqrt{1-x^2}\right)^{4}(65x^{4}-26x^{2}+1) \\ P_{8}^{-3}(x)&={1\over 768}\left(\sqrt{1-x^2}\right)^{3}(39x^{5}-26x^{3}+3x) \\ P_{8}^{-2}(x)&={1\over 256}\left(\sqrt{1-x^2}\right)^{2}(143x^{6}-143x^{4}+33x^{2}-1) \\ P_{8}^{-1}(x)&={1\over 128}\left(\sqrt{1-x^2}\right)(715x^{7}-1001x^{5}+385x^{3}-35x) \\ P_{8}^{0}(x)&={1\over 128}(6435x^{8}-12012x^{6}+6930x^{4}-1260x^{2}+35) \\ P_{8}^{1}(x)&={-9\over 16}\left(\sqrt{1-x^2}\right)(715x^{7}-1001x^{5}+385x^{3}-35x) \\ P_{8}^{2}(x)&={315\over 16}\left(\sqrt{1-x^2}\right)^{2}(143x^{6}-143x^{4}+33x^{2}-1) \\ P_{8}^{3}(x)&={-3465\over 8}\left(\sqrt{1-x^2}\right)^{3}(39x^{5}-26x^{3}+3x) \\ P_{8}^{4}(x)&={10395\over 8}\left(\sqrt{1-x^2}\right)^{4}(65x^{4}-26x^{2}+1) \\ P_{8}^{5}(x)&={-135135\over 2}\left(\sqrt{1-x^2}\right)^{5}(5x^{3}-1x) \\ P_{8}^{6}(x)&={135135\over 2}\left(\sqrt{1-x^2}\right)^{6}(15x^{2}-1) \\ P_{8}^{7}(x)&=-2027025\left(\sqrt{1-x^2}\right)^{7}x \\ P_{8}^{8}(x)&=2027025\left(\sqrt{1-x^2}\right)^{8} \end{align}</math> <math display="block">\begin{align} P_{9}^{-9}(x)&={1\over 185794560}\left(\sqrt{1-x^2}\right)^{9} \\ P_{9}^{-8}(x)&={1\over 10321920}\left(\sqrt{1-x^2}\right)^{8}x \\ P_{9}^{-7}(x)&={1\over 10321920}\left(\sqrt{1-x^2}\right)^{7}(17x^{2}-1) \\ P_{9}^{-6}(x)&={1\over 645120}\left(\sqrt{1-x^2}\right)^{6}(17x^{3}-3x) \\ P_{9}^{-5}(x)&={1\over 215040}\left(\sqrt{1-x^2}\right)^{5}(85x^{4}-30x^{2}+1) \\ P_{9}^{-4}(x)&={1\over 3072}\left(\sqrt{1-x^2}\right)^{4}(17x^{5}-10x^{3}+1x) \\ P_{9}^{-3}(x)&={1\over 3072}\left(\sqrt{1-x^2}\right)^{3}(221x^{6}-195x^{4}+39x^{2}-1) \\ P_{9}^{-2}(x)&={1\over 256}\left(\sqrt{1-x^2}\right)^{2}(221x^{7}-273x^{5}+91x^{3}-7x) \\ P_{9}^{-1}(x)&={1\over 256}\left(\sqrt{1-x^2}\right)(2431x^{8}-4004x^{6}+2002x^{4}-308x^{2}+7) \\ P_{9}^{0}(x)&={1\over 128}(12155x^{9}-25740x^{7}+18018x^{5}-4620x^{3}+315x) \\ P_{9}^{1}(x)&={-45\over 128}\left(\sqrt{1-x^2}\right)(2431x^{8}-4004x^{6}+2002x^{4}-308x^{2}+7) \\ P_{9}^{2}(x)&={495\over 16}\left(\sqrt{1-x^2}\right)^{2}(221x^{7}-273x^{5}+91x^{3}-7x) \\ P_{9}^{3}(x)&={-3465\over 16}\left(\sqrt{1-x^2}\right)^{3}(221x^{6}-195x^{4}+39x^{2}-1) \\ P_{9}^{4}(x)&={135135\over 8}\left(\sqrt{1-x^2}\right)^{4}(17x^{5}-10x^{3}+1x) \\ P_{9}^{5}(x)&={-135135\over 8}\left(\sqrt{1-x^2}\right)^{5}(85x^{4}-30x^{2}+1) \\ P_{9}^{6}(x)&={675675\over 2}\left(\sqrt{1-x^2}\right)^{6}(17x^{3}-3x) \\ P_{9}^{7}(x)&={-2027025\over 2}\left(\sqrt{1-x^2}\right)^{7}(17x^{2}-1) \\ P_{9}^{8}(x)&=34459425\left(\sqrt{1-x^2}\right)^{8}x \\ P_{9}^{9}(x)&=-34459425\left(\sqrt{1-x^2}\right)^{9} \end{align}</math> <math display="block">P_{10}^{-10}(x)={1\over 3715891200}\left(\sqrt{1-x^2}\right)^{10}</math> <math display="block">P_{10}^{-9}(x)={1\over 185794560}\left(\sqrt{1-x^2}\right)^{9}x</math> <math display="block">P_{10}^{-8}(x)={1\over 185794560}\left(\sqrt{1-x^2}\right)^{8}(19x^{2}-1)</math> <math display="block">P_{10}^{-7}(x)={1\over 10321920}\left(\sqrt{1-x^2}\right)^{7}(19x^{3}-3x)</math> <math display="block">P_{10}^{-6}(x)={1\over 10321920}\left(\sqrt{1-x^2}\right)^{6}(323x^{4}-102x^{2}+3)</math> <math display="block">P_{10}^{-5}(x)={1\over 645120}\left(\sqrt{1-x^2}\right)^{5}(323x^{5}-170x^{3}+15x)</math> <math display="block">P_{10}^{-4}(x)={1\over 43008}\left(\sqrt{1-x^2}\right)^{4}(323x^{6}-255x^{4}+45x^{2}-1)</math> <math display="block">P_{10}^{-3}(x)={1\over 3072}\left(\sqrt{1-x^2}\right)^{3}(323x^{7}-357x^{5}+105x^{3}-7x)</math> <math display="block">P_{10}^{-2}(x)={1\over 3072}\left(\sqrt{1-x^2}\right)^{2}(4199x^{8}-6188x^{6}+2730x^{4}-364x^{2}+7)</math> <math display="block">P_{10}^{-1}(x)={1\over 256}\left(\sqrt{1-x^2}\right)(4199x^{9}-7956x^{7}+4914x^{5}-1092x^{3}+63x)</math> <math display="block">P_{10}^{0}(x)={1\over 256}(46189x^{10}-109395x^{8}+90090x^{6}-30030x^{4}+3465x^{2}-63)</math> <math display="block">P_{10}^{1}(x)={-55\over 128}\left(\sqrt{1-x^2}\right)(4199x^{9}-7956x^{7}+4914x^{5}-1092x^{3}+63x)</math> <math display="block">P_{10}^{2}(x)={495\over 128}\left(\sqrt{1-x^2}\right)^{2}(4199x^{8}-6188x^{6}+2730x^{4}-364x^{2}+7)</math> <math display="block">P_{10}^{3}(x)={-6435\over 16}\left(\sqrt{1-x^2}\right)^{3}(323x^{7}-357x^{5}+105x^{3}-7x)</math> <math display="block">P_{10}^{4}(x)={45045\over 16}\left(\sqrt{1-x^2}\right)^{4}(323x^{6}-255x^{4}+45x^{2}-1)</math> <math display="block">P_{10}^{5}(x)={-135135\over 8}\left(\sqrt{1-x^2}\right)^{5}(323x^{5}-170x^{3}+15x)</math> <math display="block">P_{10}^{6}(x)={675675\over 8}\left(\sqrt{1-x^2}\right)^{6}(323x^{4}-102x^{2}+3)</math> <math display="block">P_{10}^{7}(x)={-11486475\over 2}\left(\sqrt{1-x^2}\right)^{7}(19x^{3}-3x)</math> <math display="block">P_{10}^{8}(x)={34459425\over 2}\left(\sqrt{1-x^2}\right)^{8}(19x^{2}-1)</math> <math display="block">P_{10}^{9}(x)=-654729075\left(\sqrt{1-x^2}\right)^{9}x</math> <math display="block">P_{10}^{10}(x)=654729075\left(\sqrt{1-x^2}\right)^{10}</math> -->
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)