Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Attractor
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Limit torus === There may be more than one frequency in the periodic trajectory of the system through the state of a limit cycle. For example, in physics, one frequency may dictate the rate at which a planet orbits a star while a second frequency describes the oscillations in the distance between the two bodies. If two of these frequencies form an [[irrational number|irrational fraction]] (i.e. they are [[commensurability (mathematics)|incommensurate]]), the trajectory is no longer closed, and the limit cycle becomes a limit [[torus]]. This kind of attractor is called an {{math|''N''<sub>''t''</sub>}} -torus if there are {{math|N<sub>t</sub>}} incommensurate frequencies. For example, here is a 2-torus: [[File:torus.png|300px]] A time series corresponding to this attractor is a [[quasiperiodic]] series: A discretely sampled sum of {{math|N<sub>t</sub>}} periodic functions (not necessarily [[sine]] waves) with incommensurate frequencies. Such a time series does not have a strict periodicity, but its [[power spectrum]] still consists only of sharp lines.{{Citation needed|date=July 2024}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)