Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Autonomous system (mathematics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Second order === The second-order autonomous equation <math display="block">\frac{d^2x}{dt^2} = f(x, x')</math> is more difficult, but it can be solved<ref>{{cite book |last=Boyce |first=William E. |author2=Richard C. DiPrima | title=Elementary Differential Equations and Boundary Volume Problems |edition=8th |year=2005 |publisher=John Wiley & Sons | isbn=0-471-43338-1 |page=133}}</ref> by introducing the new variable <math display="block">v = \frac{dx}{dt}</math> and expressing the [[second derivative]] of <math>x</math> via the [[chain rule]] as <math display="block">\frac{d^2x}{dt^2} = \frac{dv}{dt} = \frac{dx}{dt}\frac{dv}{dx} = v\frac{dv}{dx}</math> so that the original equation becomes <math display="block">v\frac{dv}{dx} = f(x, v)</math> which is a first order equation containing no reference to the independent variable <math>t</math>. Solving provides <math>v</math> as a function of <math>x</math>. Then, recalling the definition of <math>v</math>: <math display="block">\frac{dx}{dt} = v(x) \quad \Rightarrow \quad t + C = \int \frac{d x}{v(x)} </math> which is an implicit solution. ====Special case: {{math|1=''x''″ = ''f''(''x'')}}==== The special case where <math>f</math> is independent of <math>x'</math> <math display="block">\frac{d^2 x}{d t^2} = f(x)</math> benefits from separate treatment.<ref>{{cite web |title=Second order autonomous equation |url=https://eqworld.ipmnet.ru/en/solutions/ode/ode0301.pdf |website=[[Eqworld]] |access-date=28 February 2021 |language=en }}</ref> These types of equations are very common in [[classical mechanics]] because they are always [[Hamiltonian system]]s. The idea is to make use of the identity <math display="block">\frac{d x}{d t} = \left(\frac{d t}{d x}\right)^{-1}</math> which follows from the [[chain rule]], barring any issues due to [[division by zero]]. By inverting both sides of a first order autonomous system, one can immediately integrate with respect to <math>x</math>: <math display="block">\frac{d x}{d t} = f(x) \quad \Rightarrow \quad \frac{d t}{d x} = \frac{1}{f(x)} \quad \Rightarrow \quad t + C = \int \frac{dx}{f(x)}</math> which is another way to view the separation of variables technique. The second derivative must be expressed as a derivative with respect to <math>x</math> instead of <math>t</math>: <math display="block">\begin{align} \frac{d^2 x}{d t^2} &= \frac{d}{d t}\left(\frac{d x}{d t}\right) = \frac{d}{d x}\left(\frac{d x}{d t}\right) \frac{d x}{d t} \\[4pt] &= \frac{d}{d x}\left(\left(\frac{d t}{d x}\right)^{-1}\right) \left(\frac{d t}{d x}\right)^{-1} \\[4pt] &= - \left(\frac{d t}{d x}\right)^{-2} \frac{d^2 t}{d x^2} \left(\frac{d t}{d x}\right)^{-1} = - \left(\frac{d t}{d x}\right)^{-3} \frac{d^2 t}{d x^2} \\[4pt] &= \frac{d}{d x}\left(\frac{1}{2}\left(\frac{d t}{d x}\right)^{-2}\right) \end{align}</math> To reemphasize: what's been accomplished is that the second derivative with respect to <math>t</math> has been expressed as a derivative of <math>x</math>. The original second order equation can now be integrated: <math display="block">\begin{align} \frac{d^2 x}{d t^2} &= f(x) \\ \frac{d}{d x}\left(\frac{1}{2}\left(\frac{d t}{d x}\right)^{-2}\right) &= f(x) \\ \left(\frac{d t}{d x}\right)^{-2} &= 2 \int f(x) dx + C_1 \\ \frac{d t}{d x} &= \pm \frac{1}{\sqrt{2 \int f(x) dx + C_1}} \\ t + C_2 &= \pm \int \frac{dx}{\sqrt{2 \int f(x) dx + C_1}} \end{align}</math> This is an implicit solution. The greatest potential problem is inability to simplify the integrals, which implies difficulty or impossibility in evaluating the integration constants. ====Special case: {{math|1=''x''″ = ''x''′<sup>''n''</sup> ''f''(''x'')}}==== Using the above approach, the technique can extend to the more general equation <math display="block">\frac{d^2 x}{d t^2} = \left(\frac{d x}{d t}\right)^n f(x)</math> where <math>n</math> is some parameter not equal to two. This will work since the second derivative can be written in a form involving a power of <math>x'</math>. Rewriting the second derivative, rearranging, and expressing the left side as a derivative: <math display="block">\begin{align} &- \left(\frac{d t}{d x}\right)^{-3} \frac{d^2 t}{d x^2} = \left(\frac{d t}{d x}\right)^{-n} f(x) \\[4pt] &- \left(\frac{d t}{d x}\right)^{n - 3} \frac{d^2 t}{d x^2} = f(x) \\[4pt] &\frac{d}{d x}\left(\frac{1}{2 - n}\left(\frac{d t}{d x}\right)^{n - 2}\right) = f(x) \\[4pt] &\left(\frac{d t}{d x}\right)^{n - 2} = (2 - n) \int f(x) dx + C_1 \\[2pt] &t + C_2 = \int \left((2 - n) \int f(x) dx + C_1\right)^{\frac{1}{n - 2}} dx \end{align}</math> The right will carry +/β if <math>n</math> is even. The treatment must be different if <math>n = 2</math>: <math display="block">\begin{align} - \left(\frac{d t}{d x}\right)^{-1} \frac{d^2 t}{d x^2} &= f(x) \\ -\frac{d}{d x}\left(\ln\left(\frac{d t}{d x}\right)\right) &= f(x) \\ \frac{d t}{d x} &= C_1 e^{-\int f(x) dx} \\ t + C_2 &= C_1 \int e^{-\int f(x) dx} dx \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)