Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Barycentric coordinate system
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Vertex approach ==== Another way to solve the conversion from Cartesian to barycentric coordinates is to write the relation in the [[Matrix (mathematics)|matrix]] form <math display="block"> \mathbf{R} \boldsymbol{\lambda} = \mathbf{r}</math>with <math>\mathbf{R} = \left(\, \mathbf{r}_1 \,|\, \mathbf{r}_2 \,|\, \mathbf{r}_3 \right)</math> and <math>\boldsymbol{\lambda} = \left(\lambda_1,\lambda_2,\lambda_3\right)^\top,</math> i.e.<math display="block"> \begin{pmatrix} x_1 & x_2 & x_3\\ y_1 & y_2 & y_3 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} = \begin{pmatrix}x\\y\end{pmatrix} </math>To get the unique normalized solution we need to add the condition <math>\lambda_1 + \lambda_2 + \lambda_3 = 1</math>. The barycentric coordinates are thus the solution of the [[System of linear equations|linear system]]<math display="block"> \left(\begin{matrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3\\ y_1 & y_2 & y_3 \end{matrix}\right) \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} = \left(\begin{matrix} 1\\x\\y \end{matrix}\right) </math>which is<math display="block"> \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} = \frac{1}{2A} \begin{pmatrix} x_2y_3-x_3y_2 & y_2-y_3 & x_3-x_2 \\ x_3y_1-x_1y_3 & y_3-y_1 & x_1-x_3 \\ x_1y_2-x_2y_1 & y_1-y_2 & x_2-x_1 \end{pmatrix}\begin{pmatrix} 1\\x\\y \end{pmatrix} </math>where <math display="block"> 2A = \det(1|R) = x_1(y_2-y_3) + x_2(y_3-y_1) + x_3(y_1-y_2)</math>is twice the signed area of the triangle. The area interpretation of the barycentric coordinates can be recovered by applying [[Cramer's rule]] to this linear system.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)