Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Basel problem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Another proof using Parseval's identity== Given a [[complete orthonormal basis]] in the space <math>L^2_{\operatorname{per}}(0, 1)</math> of [[Lp space#Special cases|L2]] [[periodic function]]s over <math>(0, 1)</math> (i.e., the subspace of [[square-integrable function]]s which are also [[periodic function|periodic]]), denoted by <math>\{e_i\}_{i=-\infty}^{\infty}</math>, [[Parseval's identity]] tells us that <math display=block>\|x\|^2 = \sum_{i=-\infty}^{\infty} |\langle e_i, x\rangle|^2, </math> where <math>\|x\| := \sqrt{\langle x,x\rangle}</math> is defined in terms of the [[inner product]] on this [[Hilbert space]] given by <math display=block>\langle f, g\rangle = \int_0^1 f(x) \overline{g(x)} \, dx,\ f,g \in L^2_{\operatorname{per}}(0, 1).</math> We can consider the [[orthonormal basis]] on this space defined by <math>e_k \equiv e_k(\vartheta) := \exp(2\pi\imath k \vartheta)</math> such that <math>\langle e_k,e_j\rangle = \int_0^1 e^{2\pi\imath (k-j) \vartheta} \, d\vartheta = \delta_{k,j}</math>. Then if we take <math>f(\vartheta) := \vartheta</math>, we can compute both that <math display=block> \begin{align} \|f\|^2 & = \int_0^1 \vartheta^2 \, d\vartheta = \frac{1}{3} \\ \langle f, e_k\rangle & = \int_0^1 \vartheta e^{-2\pi\imath k\vartheta} \, d\vartheta = \Biggl\{\begin{array}{ll} \frac{1}{2}, & k = 0 \\ -\frac{1}{2\pi\imath k} & k \neq 0, \end{array} \end{align} </math> by elementary [[calculus]] and [[integration by parts]], respectively. Finally, by [[Parseval's identity]] stated in the form above, we obtain that <math display=block> \begin{align} \|f\|^2 = \frac{1}{3} & = \sum_{\stackrel{k=-\infty}{k \neq 0}}^{\infty} \frac{1}{(2\pi k)^2}+ \frac{1}{4} = 2 \sum_{k=1}^{\infty} \frac{1}{(2\pi k)^2}+ \frac{1}{4} \\ & \implies \frac{\pi^2}{6} = \frac{2 \pi^2}{3} - \frac{\pi^2}{2} = \zeta(2). \end{align} </math> ===Generalizations and recurrence relations=== Note that by considering higher-order powers of <math>f_j(\vartheta) := \vartheta^j \in L^2_{\operatorname{per}}(0, 1)</math> we can use [[integration by parts]] to extend this method to enumerating formulas for <math>\zeta(2j)</math> when <math>j > 1</math>. In particular, suppose we let <math display=block>I_{j,k} := \int_0^1 \vartheta^j e^{-2\pi\imath k\vartheta} \, d\vartheta, </math> so that [[integration by parts]] yields the [[recurrence relation]] that <math display=block> \begin{align} I_{j,k} & = \begin{cases} \frac{1}{j+1}, & k=0; \\[4pt] -\frac{1}{2\pi\imath \cdot k} + \frac{j}{2\pi\imath \cdot k} I_{j-1,k}, & k \neq 0\end{cases} \\[6pt] & = \begin{cases} \frac{1}{j+1}, & k=0; \\[4pt] -\sum\limits_{m=1}^j \frac{j!}{(j+1-m)!} \cdot \frac{1}{(2\pi\imath \cdot k)^m}, & k \neq 0. \end{cases} \end{align} </math> Then by applying [[Parseval's identity]] as we did for the first case above along with the linearity of the [[inner product]] yields that <math display=block> \begin{align} \|f_j\|^2 = \frac{1}{2j+1} & = 2 \sum_{k \geq 1} I_{j,k} \bar{I}_{j,k} + \frac{1}{(j+1)^2} \\[6pt] & = 2 \sum_{m=1}^j \sum_{r=1}^j \frac{j!^2}{(j+1-m)! (j+1-r)!} \frac{(-1)^r}{\imath^{m+r}} \frac{\zeta(m+r)}{(2\pi)^{m+r}} + \frac{1}{(j+1)^2}. \end{align} </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)