Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bell polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Properties== ===Generating function=== The exponential partial Bell polynomials can be defined by the double series expansion of its generating function: :<math> \begin{align} \Phi(t,u) &= \exp\left( u \sum_{j=1}^\infty x_j \frac{t^j}{j!} \right) = \sum_{n\geq k \geq 0} B_{n,k}(x_1,\ldots,x_{n-k+1}) \frac{t^n}{n!} u^k\\ &= 1 + \sum_{n=1}^\infty \frac{t^n}{n!} \sum_{k=1}^n u^k B_{n,k}(x_1,\ldots,x_{n-k+1}). \end{align} </math> In other words, by what amounts to the same, by the series expansion of the ''k''-th power: :<math> \frac{1}{k!}\left( \sum_{j=1}^\infty x_j \frac{t^j}{j!} \right)^k = \sum_{n=k}^\infty B_{n,k}(x_1,\ldots,x_{n-k+1}) \frac{t^n}{n!}, \qquad k = 0, 1, 2, \ldots </math> The complete exponential Bell polynomial is defined by <math>\Phi(t,1)</math>, or in other words: :<math> \Phi(t,1) = \exp\left( \sum_{j=1}^\infty x_j \frac{t^j}{j!} \right) = \sum_{n=0}^\infty B_n(x_1,\ldots, x_n) \frac{t^n}{n!}.</math> Thus, the ''n''-th complete Bell polynomial is given by :<math> B_n(x_1,\ldots, x_n) = \left. \left(\frac{\partial}{\partial t}\right)^n \exp\left( \sum_{j=1}^n x_j \frac{t^j}{j!} \right) \right|_{t=0}. </math> Likewise, the ''ordinary'' partial Bell polynomial can be defined by the generating function :<math> \hat{\Phi}(t,u) = \exp \left( u \sum_{j=1}^\infty x_j t^j \right) = \sum_{n\geq k\geq 0} \hat{B}_{n,k}(x_1,\ldots,x_{n-k+1}) t^n \frac{u^k}{k!}.</math> Or, equivalently, by series expansion of the ''k''-th power: :<math>\left(\sum_{j=1}^\infty x_j t^j\right)^k = \sum_{n=k}^\infty \hat{B}_{n,k}(x_1, \ldots, x_{n-k+1}) t^n. </math> See also [[Generating function transformation#Powers of an OGF and composition with functions|generating function transformations]] for Bell polynomial generating function expansions of compositions of sequence [[generating functions]] and [[Exponentiation|powers]], [[logarithm]]s, and [[exponential function|exponentials]] of a sequence generating function. Each of these formulas is cited in the respective sections of Comtet.{{Sfn|Comtet|1974}} ===Recurrence relations=== The complete Bell polynomials can be [[Recurrence relation|recurrently]] defined as :<math> B_{n+1}(x_1, \ldots, x_{n+1}) = \sum_{i=0}^n {n \choose i} B_{n-i}(x_1, \ldots, x_{n-i}) x_{i+1}</math> with the initial value <math>B_0 = 1</math>. The partial Bell polynomials can also be computed efficiently by a recurrence relation: :<math> B_{n+1,k+1}(x_1, \ldots, x_{n-k+1}) = \sum_{i=0}^{n-k} \binom{n}{i} x_{i+1} B_{n-i,k}(x_1, \ldots, x_{n-k-i+1})</math> where :<math> B_{0,0} = 1; </math> :<math> B_{n,0} = 0 \text{ for } n \geq 1; </math> :<math> B_{0,k} = 0 \text{ for } k \geq 1. </math> In addition:{{sfn|Cvijović|2011}} :<math>B_{n, k_1 + k_2}(x_1, \ldots, x_{n-k_1-k_2+1}) = \frac{k_1! \, k_2!}{(k_1 + k_2)!} \sum_{i=0}^n \binom{n}{i} B_{i, k_1}(x_1, \ldots, x_{i-k_1+1}) B_{n-i, k_2}(x_1, \ldots, x_{n-i-k_2+1}).</math> When <math>1 \le a < n</math>, :<math>B_{n, n-a}(x_1, \ldots, x_{a+1}) = \sum_{j = a+1}^{2a}\frac{j!}{a!}\binom{n}{j}x_1^{n-j} B_{a, j-a}\Bigl(\frac{x_2}{2}, \frac{x_3}{3}, \ldots, \frac{x_{2(a+1)-j}}{2(a+1)-j}\Bigr).</math> The complete Bell polynomials also satisfy the following recurrence differential formula:{{Sfn|Alexeev|Pologova|Alekseyev|2017|loc=sect. 4.2}} : <math> \begin{align} B_n(x_1, \ldots, x_n) = \frac{1}{n-1} \left[ \sum_{i=2}^n \right. & \sum_{j=1}^{i-1} (i-1) \binom{i-2}{j-1} x_j x_{i-j}\frac{\partial B_{n-1}(x_1,\dots,x_{n-1})}{\partial x_{i-1}} \\[5pt] & \left. {} + \sum_{i=2}^n \sum_{j=1}^{i-1} \frac{x_{i+1}}{\binom i j} \frac{\partial^2 B_{n-1}(x_1,\dots,x_{n-1})}{\partial x_j \partial x_{i-j}} \right. \\[5pt] & \left. {} + \sum_{i=2}^n x_i \frac{\partial B_{n-1}(x_1,\dots,x_{n-1})}{\partial x_{i-1}} \right]. \end{align} </math> ===Derivatives=== The partial derivatives of the complete Bell polynomials are given by{{Sfn|Bell|1934|loc=identity (5.1) on p. 266}} : <math> \frac{\partial B_{n}}{\partial x_i} (x_1, \ldots, x_{n}) = \binom{n}{i} B_{n-i}(x_1, \ldots, x_{n-i}).</math> Similarly, the partial derivatives of the partial Bell polynomials are given by : <math> \frac{\partial B_{n,k}}{\partial x_i} (x_1, \ldots, x_{n-k+1}) = \binom{n}{i} B_{n-i,k-1}(x_1, \ldots, x_{n-i-k+2}).</math> If the arguments of the Bell polynomials are one-dimensional functions, the chain rule can be used to obtain : <math> \frac{d}{dx} \left(B_{n,k}(a_1(x), \cdots, a_{n-k+1}(x))\right) = \sum_{i=1}^{n-k+1} \binom{n}{i} a_i'(x) B_{n-i,k-1}(a_1(x), \cdots, a_{n-i-k+2}(x)).</math> ===Stirling numbers and Bell numbers=== The value of the Bell polynomial ''B''<sub>''n'',''k''</sub>(''x''<sub>1</sub>,''x''<sub>2</sub>,...) on the sequence of [[factorial]]s equals an unsigned [[Stirling number of the first kind]]: :<math>B_{n,k}(0!,1!,\dots,(n-k)!)=c(n,k)=|s(n,k)| = \left[{n\atop k}\right].</math> The sum of these values gives the value of the complete Bell polynomial on the sequence of factorials: :<math>B_n(0!,1!,\dots,(n-1)!)=\sum_{k=1}^n B_{n,k}(0!,1!,\dots,(n-k)!) = \sum_{k=1}^n \left[{n\atop k}\right] = n!.</math> The value of the Bell polynomial ''B''<sub>''n'',''k''</sub>(''x''<sub>1</sub>,''x''<sub>2</sub>,...) on the sequence of ones equals a [[Stirling number of the second kind]]: :<math>B_{n,k}(1,1,\dots,1)=S(n,k)=\left\{{n\atop k}\right\}.</math> The sum of these values gives the value of the complete Bell polynomial on the sequence of ones: :<math>B_n(1,1,\dots,1)=\sum_{k=1}^n B_{n,k}(1,1,\dots,1) = \sum_{k=1}^n \left\{{n\atop k}\right\},</math> which is the ''n''th [[Bell number]]. :<math>B_{n,k}(1!,2!,\ldots,(n-k+1)!) = \binom{n-1}{k-1} \frac{n!}{k!} = L(n,k)</math> which gives the [[Lah number]]. ===Touchard polynomials=== {{main|Touchard polynomials}} Touchard polynomial <math>T_n(x) = \sum_{k=0}^n \left\{{n\atop k}\right\}\cdot x^k</math> can be expressed as the value of the complete Bell polynomial on all arguments being ''x'': : <math>T_n(x) = B_n(x,x,\dots,x).</math> ===Inverse relations=== If we define :<math>y_n = \sum_{k=1}^n B_{n,k}(x_1,\ldots,x_{n-k+1}),</math> then we have the inverse relationship :<math>x_n = \sum_{k=1}^n (-1)^{k-1} (k-1)! B_{n,k}(y_1,\ldots,y_{n-k+1}).</math> More generally,<ref>{{Cite journal |last1=Chou |first1=W.-S. |last2=Hsu |first2=Leetsch C. |last3=Shiue |first3=Peter J.-S. |date=2006-06-01 |title=Application of Faà di Bruno's formula in characterization of inverse relations |journal=Journal of Computational and Applied Mathematics |language=en |volume=190 |issue=1–2 |pages=151–169 |doi=10.1016/j.cam.2004.12.041|doi-access=free }}</ref><ref>{{Cite journal |last=Chu |first=Wenchang |date=2021-11-19 |title=Bell Polynomials and Nonlinear Inverse Relations |url=https://www.combinatorics.org/ojs/index.php/eljc/article/view/v28i4p24 |journal=The Electronic Journal of Combinatorics |volume=28 |issue=4 |doi=10.37236/10390 |issn=1077-8926|doi-access=free }}</ref> given some function <math>f</math> admitting an inverse <math>g = f^{-1}</math>,<blockquote><math>y_n = \sum_{k=0}^n f^{(k)}(a) \, B_{n,k}(x_1, \ldots, x_{n-k+1}) \quad \Leftrightarrow \quad x_n = \sum_{k=0}^n g^{(k)}\big(f(a)\big) \, B_{n,k}(y_1, \ldots, y_{n-k+1}). </math></blockquote> ===Determinant forms=== The complete Bell polynomial can be expressed as [[determinant]]s: :<math>B_n(x_1,\dots,x_n) = \det\begin{bmatrix} x_1 & {n-1 \choose 1} x_2 & {n-1 \choose 2}x_3 & {n-1 \choose 3} x_4 & \cdots & \cdots & x_n \\ \\ -1 & x_1 & {n-2 \choose 1} x_2 & {n-2 \choose 2} x_3 & \cdots & \cdots & x_{n-1} \\ \\ 0 & -1 & x_1 & {n-3 \choose 1} x_2 & \cdots & \cdots & x_{n-2} \\ \\ 0 & 0 & -1 & x_1 & \cdots & \cdots & x_{n-3} \\ \\ 0 & 0 & 0 & -1 & \cdots & \cdots & x_{n-4} \\ \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ \\ 0 & 0 & 0 & 0 & \cdots & -1 & x_1 \end{bmatrix}</math> and :<math>B_n(x_1,\dots,x_n) = \det\begin{bmatrix} \frac{x_1}{0!} & \frac{x_2}{1!} & \frac{x_3}{2!} & \frac{x_4}{3!} & \cdots & \cdots & \frac{x_n}{(n-1)!} \\ \\ -1 & \frac{x_1}{0!} & \frac{x_2}{1!} & \frac{x_3}{2!} & \cdots & \cdots & \frac{x_{n-1}}{(n-2)!} \\ \\ 0 & -2 & \frac{x_1}{0!} & \frac{x_2}{1!} & \cdots & \cdots & \frac{x_{n-2}}{(n-3)!} \\ \\ 0 & 0 & -3 & \frac{x_1}{0!} & \cdots & \cdots & \frac{x_{n-3}}{(n-4)!} \\ \\ 0 & 0 & 0 & -4 & \cdots & \cdots & \frac{x_{n-4}}{(n-5)!} \\ \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ \\ 0 & 0 & 0 & 0 & \cdots & -(n-1) & \frac{x_1}{0!} \end{bmatrix}.</math> ===Convolution identity=== For sequences ''x''<sub>''n''</sub>, ''y''<sub>''n''</sub>, ''n'' = 1, 2, ..., define a [[convolution]] by: :<math>(x \mathbin{\diamondsuit} y)_n = \sum_{j=1}^{n-1} {n \choose j} x_j y_{n-j}.</math> The bounds of summation are 1 and ''n'' − 1, not 0 and ''n'' . Let <math>x_n^{k\diamondsuit}\,</math> be the ''n''th term of the sequence :<math>\displaystyle\underbrace{x\mathbin{\diamondsuit}\cdots\mathbin{\diamondsuit} x}_{k \text{ factors}}.\,</math> Then{{Sfn|Cvijović|2011}} :<math>B_{n,k}(x_1,\dots,x_{n-k+1}) = {x_n^{k\diamondsuit} \over k!}.\,</math> For example, let us compute <math> B_{4,3}(x_1,x_2) </math>. We have :<math> x = ( x_1 \ , \ x_2 \ , \ x_3 \ , \ x_4 \ , \dots ) </math> :<math> x \mathbin{\diamondsuit} x = ( 0,\ 2 x_1^2 \ ,\ 6 x_1 x_2 \ , \ 8 x_1 x_3 + 6 x_2^2 \ , \dots ) </math> :<math> x \mathbin{\diamondsuit} x \mathbin{\diamondsuit} x = ( 0 \ ,\ 0 \ , \ 6 x_1^3 \ , \ 36 x_1^2 x_2 \ , \dots ) </math> and thus, :<math> B_{4,3}(x_1,x_2) = \frac{ ( x \mathbin{\diamondsuit} x \mathbin{\diamondsuit} x)_4 }{3!} = 6 x_1^2 x_2. </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)