Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Beta distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=====Mode and concentration===== [[Concave function|Concave]] beta distributions, which have <math>\alpha,\beta>1</math>, can be parametrized in terms of mode and "concentration". The mode, <math>\omega=\frac{\alpha-1}{\alpha+\beta-2}</math>, and concentration, <math>\kappa = \alpha + \beta</math>, can be used to define the usual shape parameters as follows:<ref name="Kruschke2015">{{cite book|last=Kruschke|first=John K.|author-link=John K. Kruschke|title=Doing Bayesian Data Analysis: A Tutorial with R, JAGS and Stan|year=2015|publisher=Academic Press / Elsevier|isbn=978-0-12-405888-0}}</ref> :<math>\begin{align} \alpha &= \omega (\kappa - 2) + 1\\ \beta &= (1 - \omega)(\kappa - 2) + 1 \end{align}</math> For the mode, <math>0<\omega<1</math>, to be well-defined, we need <math>\alpha,\beta>1</math>, or equivalently <math>\kappa>2</math>. If instead we define the concentration as <math>c=\alpha+\beta-2</math>, the condition simplifies to <math>c>0</math> and the beta density at <math>\alpha=1+c\omega</math> and <math>\beta=1+c(1-\omega)</math> can be written as: :<math> f(x;\omega,c) = \frac{x^{c\omega}(1-x)^{c(1-\omega)}}{\Beta\bigl(1+c\omega,1+c(1-\omega)\bigr)} </math> where <math>c</math> directly scales the [[sufficient statistics]], <math>\log(x)</math> and <math>\log(1-x)</math>. Note also that in the limit, <math>c\to0</math>, the distribution becomes flat.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)