Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Binomial theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Proofs == === Combinatorial proof === Expanding {{math|1=(''x'' + ''y'')<sup>''n''</sup>}} yields the sum of the {{math|2<sup>''n''</sup>}} products of the form {{math|1=''e''<sub>1</sub>''e''<sub>2</sub> ... ''e''<sub>''n''</sub>}} where each {{math|''e''<sub>''i''</sub>}} is {{mvar|''x''}} or {{mvar|y}}. Rearranging factors shows that each product equals {{math|''x''<sup>''n''−''k''</sup>''y''<sup>''k''</sup>}} for some {{mvar|k}} between {{math|0}} and {{mvar|n}}. For a given {{mvar|k}}, the following are proved equal in succession: * the number of terms equal to {{math|1=''x''<sup>''n''β''k''</sup>''y''<sup>''k''</sup>}} in the expansion * the number of {{mvar|n}}-character {{math|''x'',''y''}} strings having {{mvar|y}} in exactly {{mvar|k}} positions * the number of {{mvar|k}}-element subsets of {{math|1={{mset|1, 2, ..., ''n''}}}} * <math>\tbinom{n}{k},</math> either by definition, or by a short combinatorial argument if one is defining <math>\tbinom{n}{k}</math> as <math>\tfrac{n!}{k! (n-k)!}.</math> This proves the binomial theorem. ==== Example ==== The coefficient of {{math|''xy''<sup>2</sup>}} in <math display="block">\begin{align} (x+y)^3 &= (x+y)(x+y)(x+y) \\ &= xxx + xxy + xyx + \underline{xyy} + yxx + \underline{yxy} + \underline{yyx} + yyy \\ &= x^3 + 3x^2y + \underline{3xy^2} + y^3 \end{align}</math> equals <math>\tbinom{3}{2}=3</math> because there are three {{math|''x'',''y''}} strings of length 3 with exactly two {{mvar|y}}'s, namely, <math display="block">xyy, \; yxy, \; yyx,</math> corresponding to the three 2-element subsets of {{math|{{mset|1, 2, 3}}}}, namely, <math display="block">\{2,3\},\;\{1,3\},\;\{1,2\}, </math> where each subset specifies the positions of the {{mvar|y}} in a corresponding string. === Inductive proof === [[mathematical induction|Induction]] yields another proof of the binomial theorem. When {{math|1=''n'' = 0}}, both sides equal {{math|1}}, since {{math|1=''x''<sup>0</sup> = 1}} and <math>\tbinom{0}{0}=1.</math> Now suppose that the equality holds for a given {{mvar|n}}; we will prove it for {{math|1=''n'' + 1}}. For {{math|1=''j'', ''k'' β₯ 0}}, let {{math|1=[''f''(''x'', ''y'')]<sub>''j'',''k''</sub>}} denote the coefficient of {{math|1=''x''<sup>''j''</sup>''y''<sup>''k''</sup>}} in the polynomial {{math|1=''f''(''x'', ''y'')}}. By the inductive hypothesis, {{math|1=(''x'' + ''y'')<sup>''n''</sup>}} is a polynomial in {{mvar|x}} and {{mvar|y}} such that {{math|1=[(''x'' + ''y'')<sup>''n''</sup>]<sub>''j'',''k''</sub>}} is <math>\tbinom{n}{k}</math> if {{math|1=''j'' + ''k'' = ''n''}}, and {{mvar|0}} otherwise. The identity <math display="block"> (x+y)^{n+1} = x(x+y)^n + y(x+y)^n</math> shows that {{math|1=(''x'' + ''y'')<sup>''n''+1</sup>}} is also a polynomial in {{mvar|x}} and {{mvar|y}}, and <math display="block"> [(x+y)^{n+1}]_{j,k} = [(x+y)^n]_{j-1,k} + [(x+y)^n]_{j,k-1},</math> since if {{math|1=''j'' + ''k'' = ''n'' + 1}}, then {{math|1=(''j'' β 1) + ''k'' = ''n''}} and {{math|1=''j'' + (''k'' β 1) = ''n''}}. Now, the right hand side is <math display="block"> \binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k},</math> by [[Pascal's identity]].<ref>[http://proofs.wiki/Binomial_theorem Binomial theorem] β inductive proofs {{webarchive |url=https://web.archive.org/web/20150224130932/http://proofs.wiki/Binomial_theorem |date=February 24, 2015 }}</ref> On the other hand, if {{math|1=''j'' + ''k'' β ''n'' + 1}}, then {{math|1=(''j'' β 1) + ''k'' β ''n''}} and {{math|1=''j'' + (''k'' β 1) β ''n''}}, so we get {{math|1=0 + 0 = 0}}. Thus <math display="block">(x+y)^{n+1} = \sum_{k=0}^{n+1} \binom{n+1}{k} x^{n+1-k} y^k,</math> which is the inductive hypothesis with {{math|1=''n'' + 1}} substituted for {{mvar|n}} and so completes the inductive step.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)