Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Birthday problem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Probability table=== {{Main|Birthday attack}} :{| class="wikitable" style="white-space:nowrap;" |- ! rowspan="2" | length of <br />hex string ! rowspan="2" | no. of<br />bits<br />({{mvar|b}}) ! rowspan="2" | hash space<br />size<br />({{math|2<sup>''b''</sup>}}) ! colspan="10" | Number of hashed elements such that probability of at least one hash collision β₯ {{mvar|p}} |- ! {{mvar|p}} = {{val||e=-18}} ! {{mvar|p}} = {{val||e=-15}} ! {{mvar|p}} = {{val||e=-12}} ! {{mvar|p}} = {{val||e=-9}} ! {{mvar|p}} = {{val||e=-6}} ! {{mvar|p}} = 0.001 ! {{mvar|p}} = 0.01 ! {{mvar|p}} = 0.25 ! {{mvar|p}} = 0.50 ! {{mvar|p}} = 0.75 |- align="center" | bgcolor="#F2F2F2" | 8 | bgcolor="#F2F2F2" | 32 | bgcolor="#F2F2F2" | {{val|4.3|e=9}} | 2 | 2 | 2 | 2.9 | 93 | {{val|2.9|e=3}} | {{val|9.3|e=3}} | {{val|5.0|e=4}} | {{val|7.7|e=4}} | {{val|1.1|e=5}} |- align="center" | bgcolor="#F2F2F2" | (10) | bgcolor="#F2F2F2" | (40) | bgcolor="#F2F2F2" | ({{val|1.1|e=12}}) | 2 | 2 | 2 | 47 | {{val|1.5|e=3}} | {{val|4.7|e=4}} | {{val|1.5|e=5}} | {{val|8.0|e=5}} | {{val|1.2|e=6}} | {{val|1.7|e=6}} |- align="center" | bgcolor="#F2F2F2" | (12) | bgcolor="#F2F2F2" | (48) | bgcolor="#F2F2F2" | ({{val|2.8|e=14}}) | 2 | 2 | 24 | {{val|7.5|e=2}} | {{val|2.4|e=4}} | {{val|7.5|e=5}} | {{val|2.4|e=6}} | {{val|1.3|e=7}} | {{val|2.0|e=7}} | {{val|2.8|e=7}} |- align="center" | bgcolor="#F2F2F2" | 16 | bgcolor="#F2F2F2" | 64 | bgcolor="#F2F2F2" | {{val|1.8|e=19}} | 6.1 | {{val|1.9|e=2}} | {{val|6.1|e=3}} | {{val|1.9|e=5}} | {{val|6.1|e=6}} | {{val|1.9|e=8}} | {{val|6.1|e=8}} | {{val|3.3|e=9}} | {{val|5.1|e=9}} | {{val|7.2|e=9}} |- align="center" | bgcolor="#F2F2F2" | (24) | bgcolor="#F2F2F2" | (96) | bgcolor="#F2F2F2" | ({{val|7.9|e=28}}) | {{val|4.0|e=5}} | {{val|1.3|e=7}} | {{val|4.0|e=8}} | {{val|1.3|e=10}} | {{val|4.0|e=11}} | {{val|1.3|e=13}} | {{val|4.0|e=13}} | {{val|2.1|e=14}} | {{val|3.3|e=14}} | {{val|4.7|e=14}} |- align="center" | bgcolor="#F2F2F2" | 32 | bgcolor="#F2F2F2" | 128 | bgcolor="#F2F2F2" | {{val|3.4|e=38}} | {{val|2.6|e=10}} | {{val|8.2|e=11}} | {{val|2.6|e=13}} | {{val|8.2|e=14}} | {{val|2.6|e=16}} | {{val|8.3|e=17}} | {{val|2.6|e=18}} | {{val|1.4|e=19}} | {{val|2.2|e=19}} | {{val|3.1|e=19}} |- align="center" | bgcolor="#F2F2F2" | (48) | bgcolor="#F2F2F2" | (192) | bgcolor="#F2F2F2" | ({{val|6.3|e=57}}) | {{val|1.1|e=20}} | {{val|3.5|e=21}} | {{val|1.1|e=23}} | {{val|3.5|e=24}} | {{val|1.1|e=26}} | {{val|3.5|e=27}} | {{val|1.1|e=28}} | {{val|6.0|e=28}} | {{val|9.3|e=28}} | {{val|1.3|e=29}} |- align="center" | bgcolor="#F2F2F2" | 64 | bgcolor="#F2F2F2" | 256 | bgcolor="#F2F2F2" | {{val|1.2|e=77}} | {{val|4.8|e=29}} | {{val|1.5|e=31}} | {{val|4.8|e=32}} | {{val|1.5|e=34}} | {{val|4.8|e=35}} | {{val|1.5|e=37}} | {{val|4.8|e=37}} | {{val|2.6|e=38}} | {{val|4.0|e=38}} | {{val|5.7|e=38}} |- align="center" | bgcolor="#F2F2F2" | (96) | bgcolor="#F2F2F2" | (384) | bgcolor="#F2F2F2" | ({{val|3.9|e=115}}) | {{val|8.9|e=48}} | {{val|2.8|e=50}} | {{val|8.9|e=51}} | {{val|2.8|e=53}} | {{val|8.9|e=54}} | {{val|2.8|e=56}} | {{val|8.9|e=56}} | {{val|4.8|e=57}} | {{val|7.4|e=57}} | {{val|1.0|e=58}} |- align="center" | bgcolor="#F2F2F2" | 128 | bgcolor="#F2F2F2" | 512 | bgcolor="#F2F2F2" | {{val|1.3|e=154}} | {{val|1.6|e=68}} | {{val|5.2|e=69}} | {{val|1.6|e=71}} | {{val|5.2|e=72}} | {{val|1.6|e=74}} | {{val|5.2|e=75}} | {{val|1.6|e=76}} | {{val|8.8|e=76}} | {{val|1.4|e=77}} | {{val|1.9|e=77}} |} [[File:birthday_attack_vs_paradox.svg|thumb|Comparison of the birthday problem (1) and birthday attack (2):{{parabreak}} In (1), collisions are found within one set, in this case, 3 out of 276 pairings of the 24 lunar astronauts.{{parabreak}} In (2), collisions are found between two sets, in this case, 1 out of 256 pairings of only the first bytes of SHA-256 hashes of 16 variants each of benign and harmful contracts.]] The lighter fields in this table show the number of hashes needed to achieve the given probability of collision (column) given a hash space of a certain size in bits (row). Using the birthday analogy: the "hash space size" resembles the "available days", the "probability of collision" resembles the "probability of shared birthday", and the "required number of hashed elements" resembles the "required number of people in a group". One could also use this chart to determine the minimum hash size required (given upper bounds on the hashes and probability of error), or the probability of collision (for fixed number of hashes and probability of error). For comparison, {{val|e=-18}} to {{val|e=-15}} is the uncorrectable [[bit error rate]] of a typical hard disk.<ref>Jim Gray, Catharine van Ingen. [https://arxiv.org/abs/cs/0701166 Empirical Measurements of Disk Failure Rates and Error Rates]</ref> In theory, 128-bit hash functions, such as [[MD5]], should stay within that range until about {{val|8.2|e=11}} documents, even if its possible outputs are many more.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)