Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bisection method
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Methods based on degree computation === Some of these methods are based on computing the [[topological degree]], which for a bounded region <math>\Omega \subseteq \mathbb{R}^n</math> and a differentiable function <math>f: \mathbb{R}^n \rightarrow \mathbb{R}^n</math> is defined as a sum over its roots: :<math>\deg(f, \Omega) := \sum_{y\in f^{-1}(\mathbf{0})} \sgn \det(Df(y))</math>, where <math>Df(y)</math> is the [[Jacobian matrix]], <math>\mathbf{0} = (0,0,...,0)^T</math>, and :<math>\sgn(x) = \begin{cases} 1, & x>0 \\ 0, & x=0 \\ -1, & x<0 \\ \end{cases}</math> is the [[sign function]].<ref>{{cite journal |last1=Polymilis |first1=C. |last2=Servizi |first2=G. |last3=Turchetti |first3=G. |last4=Skokos |first4=Ch. |last5=Vrahatis |first5=M. N. |journal=Libration Point Orbits and Applications |title=Locating Periodic Orbits by Topological Degree Theory |date=May 2003 |pages=665β676 |doi=10.1142/9789812704849_0031 |arxiv=nlin/0211044 |isbn=978-981-238-363-1 }}</ref> In order for a root to exist, it is sufficient that <math>\deg(f, \Omega) \neq 0</math>, and this can be verified using a [[surface integral]] over the boundary of <math>\Omega</math>.<ref>{{Cite journal |last=Kearfott |first=Baker |date=1979-06-01 |title=An efficient degree-computation method for a generalized method of bisection |url=https://doi.org/10.1007/BF01404868 |journal=Numerische Mathematik |language=en |volume=32 |issue=2 |pages=109β127 |doi=10.1007/BF01404868 |s2cid=122058552 |issn=0945-3245|url-access=subscription }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)