Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Boundary layer
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Von Mises transformation=== For steady two-dimensional boundary layers, [[Richard von Mises|von Mises]]<ref>{{Cite book|doi=10.1007/978-3-662-11836-8_49|chapter=Bemerkungen zur Hydrodynamik|title=Ludwig Prandtl Gesammelte Abhandlungen|year=1961|last1=Tollmien|first1=Walter|last2=Schlichting|first2=Hermann|last3=Görtler|first3=Henry|last4=Riegels|first4=F. W.|pages=627–631|isbn=978-3-662-11837-5}}</ref> introduced a transformation which takes <math>x</math> and <math>\psi</math>([[stream function]]) as independent variables instead of <math>x</math> and <math>y</math> and uses a dependent variable <math>\chi = U^2-u^2</math> instead of <math>u</math>. The boundary layer equation then become :<math>\frac{\partial \chi}{\partial x} = \nu \sqrt{U^2-\chi} \, \frac{\partial^2 \chi}{\partial \psi^2}</math> The original variables are recovered from :<math>y = \int \sqrt{U^2-\chi} \, d\psi, \quad u = \sqrt{U^2-\chi}, \quad v = u\int \frac{\partial}{\partial x} \left(\frac{1}{u}\right) \, d\psi.</math> This transformation is later extended to compressible boundary layer by [[Theodore von Kármán|von Kármán]] and [[Qian Xuesen|HS Tsien]].<ref>{{Cite journal|doi=10.2514/8.591|title=Boundary Layer in Compressible Fluids|year=1938|last1=von Kármán|first1=T.|last2=Tsien|first2=H. S.|journal=Journal of the Aeronautical Sciences|volume=5|issue=6|pages=227–232}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)