Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bounded variation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Basic properties== Only the properties common to [[Function (mathematics)|function]]s of one variable and to [[Function (mathematics)|function]]s of several variables will be considered in the following, and [[Mathematical proof|proof]]s will be carried on only for functions of several variables since the [[Mathematical proof|proof]] for the case of one variable is a straightforward adaptation of the several variables case: also, in each section it will be stated if the property is shared also by functions of locally bounded variation or not. References {{Harv|Giusti|1984|pp=7–9}}, {{Harv|Hudjaev|Vol'pert|1985}} and {{Harv|Màlek|Nečas|Rokyta|Růžička|1996}} are extensively used. ===BV functions have only jump-type or removable discontinuities=== In the case of one variable, the assertion is clear: for each point <math>x_0</math> in the [[interval (mathematics)|interval]] <math>[a , b]\subset\mathbb{R}</math> of definition of the function '''<math>u</math>''', either one of the following two assertions is true :<math> \lim_{x\rightarrow x_{0^-}}\!\!\!u(x) = \!\!\!\lim_{x\rightarrow x_{0^+}}\!\!\!u(x) </math> :<math> \lim_{x\rightarrow x_{0^-}}\!\!\!u(x) \neq \!\!\!\lim_{x\rightarrow x_{0^+}}\!\!\!u(x) </math> while both [[Limit of a function|limits]] exist and are finite. In the case of functions of several variables, there are some premises to understand: first of all, there is a [[Linear continuum|continuum]] of [[Direction (geometry, geography)|direction]]s along which it is possible to approach a given point '''<math>x_0</math>''' belonging to the domain '''<math>\Omega</math>'''⊂<math>\mathbb{R}^n</math>. It is necessary to make precise a suitable concept of [[Limit of a function|limit]]: choosing a [[unit vector]] <math>{\boldsymbol{\hat{a}}}\in\mathbb{R}^n</math> it is possible to divide '''<math>\Omega</math>''' in two sets :<math>\Omega_{({\boldsymbol{\hat{a}}},\boldsymbol{x}_0)} = \Omega \cap \{\boldsymbol{x}\in\mathbb{R}^n|\langle\boldsymbol{x}-\boldsymbol{x}_0,{\boldsymbol{\hat{a}}}\rangle>0\} \qquad \Omega_{(-{\boldsymbol{\hat{a}}},\boldsymbol{x}_0)} = \Omega \cap \{\boldsymbol{x}\in\mathbb{R}^n|\langle\boldsymbol{x}-\boldsymbol{x}_0,-{\boldsymbol{\hat{a}}}\rangle>0\} </math> Then for each point '''<math>x_0</math>''' belonging to the domain <math>\Omega\in\mathbb{R}^n</math> of the BV function '''<math>u</math>''', only one of the following two assertions is true :<math> \lim_{\overset{\boldsymbol{x}\rightarrow \boldsymbol{x}_0}{\boldsymbol{x}\in\Omega_{({\boldsymbol{\hat{a}}},\boldsymbol{x}_0)}}}\!\!\!\!\!\!u(\boldsymbol{x}) = \!\!\!\!\!\!\!\lim_{\overset{\boldsymbol{x}\rightarrow \boldsymbol{x}_0}{\boldsymbol{x}\in\Omega_{(-{\boldsymbol{\hat{a}}},\boldsymbol{x}_0)}}}\!\!\!\!\!\!\!u(\boldsymbol{x}) </math> :<math> \lim_{\overset{\boldsymbol{x}\rightarrow \boldsymbol{x}_0}{\boldsymbol{x}\in\Omega_{({\boldsymbol{\hat{a}}},\boldsymbol{x}_0)}}}\!\!\!\!\!\!u(\boldsymbol{x}) \neq \!\!\!\!\!\!\!\lim_{\overset{\boldsymbol{x}\rightarrow \boldsymbol{x}_0}{\boldsymbol{x}\in\Omega_{(-{\boldsymbol{\hat{a}}},\boldsymbol{x}_0)}}}\!\!\!\!\!\!\!u(\boldsymbol{x}) </math> or '''<math>x_0</math>''' belongs to a [[subset]] of '''<math>\Omega</math>''' having zero <math>n-1</math>-dimensional [[Hausdorff measure]]. The quantities :<math>\lim_{\overset{\boldsymbol{x}\rightarrow \boldsymbol{x}_0}{\boldsymbol{x}\in\Omega_{({\boldsymbol{\hat{a}}},\boldsymbol{x}_0)}}}\!\!\!\!\!\!u(\boldsymbol{x})=u_{\boldsymbol{\hat a}}(\boldsymbol{x}_0) \qquad \lim_{\overset{\boldsymbol{x}\rightarrow \boldsymbol{x}_0}{\boldsymbol{x}\in\Omega_{(-{\boldsymbol{\hat{a}}},\boldsymbol{x}_0)}}}\!\!\!\!\!\!\!u(\boldsymbol{x})=u_{-\boldsymbol{\hat a}}(\boldsymbol{x}_0)</math> are called '''approximate limits''' of the BV function '''<math>u</math>''' at the point '''<math>x_0</math>'''. ===''V''(⋅, Ω) is lower semi-continuous on ''L''<sup>1</sup>(Ω)=== The [[functional (mathematics)|functional]] <math>V(\cdot,\Omega):\operatorname\operatorname{BV}(\Omega)\rightarrow \mathbb{R}^+</math> is [[semi-continuity|lower semi-continuous]]: to see this, choose a [[Cauchy sequence]] of BV-functions '''<math>\{u_n\}_{n\in\mathbb{N}}</math>''' converging to '''[[locally integrable function|<math>u\in L^1_\text{loc}(\Omega)</math>]]'''. Then, since all the functions of the sequence and their limit function are [[integral|integrable]] and by the definition of [[lower limit]] :<math>\begin{align} \liminf_{n\rightarrow\infty}V(u_n,\Omega) &\geq \liminf_{n\rightarrow\infty} \int_\Omega u_n(x)\operatorname{div}\, \boldsymbol{\phi}\, \mathrm{d}x \\ &\geq \int_\Omega \lim_{n\rightarrow\infty} u_n(x)\operatorname{div}\, \boldsymbol{\phi}\, \mathrm{d}x \\ &= \int_\Omega u(x)\operatorname{div}\boldsymbol{\phi}\, \mathrm{d}x \qquad\forall\boldsymbol{\phi}\in C_c^1(\Omega,\mathbb{R}^n),\quad\Vert\boldsymbol{\phi}\Vert_{L^\infty(\Omega)}\leq 1 \end{align}</math> Now considering the [[supremum]] on the set of functions <math>\boldsymbol{\phi}\in C_c^1(\Omega,\mathbb{R}^n)</math> such that <math>\Vert\boldsymbol{\phi}\Vert_{L^\infty(\Omega)}\leq 1 </math> then the following inequality holds true :<math>\liminf_{n\rightarrow\infty}V(u_n,\Omega)\geq V(u,\Omega)</math> which is exactly the definition of [[semicontinuity|lower semicontinuity]]. ===BV(Ω) is a Banach space=== By definition '''<math>\operatorname\operatorname{BV}(\Omega)</math>''' is a [[subset]] of '''[[integrable function|<math>L^1(\Omega)</math>]]''', while [[linearity]] follows from the linearity properties of the defining [[integral]] i.e. :<math>\begin{align} \int_\Omega [u(x)+v(x)]\operatorname{div}\boldsymbol{\phi}(x)\,\mathrm{d}x & = \int_\Omega u(x)\operatorname{div}\boldsymbol{\phi}(x)\,\mathrm{d}x +\int_\Omega v(x) \operatorname{div} \boldsymbol{\phi}(x)\,\mathrm{d}x = \\ & =- \int_\Omega \langle\boldsymbol{\phi}(x), Du(x)\rangle- \int_\Omega \langle \boldsymbol{\phi}(x), Dv(x)\rangle =- \int_\Omega \langle \boldsymbol{\phi}(x), [Du(x)+Dv(x)]\rangle \end{align} </math> for all <math>\phi\in C_c^1(\Omega,\mathbb{R}^n)</math> therefore <math>u+v\in \operatorname\operatorname{BV}(\Omega)</math>for all <math>u,v\in \operatorname\operatorname{BV}(\Omega)</math>, and :<math> \int_\Omega c\cdot u(x)\operatorname{div}\boldsymbol{\phi}(x)\,\mathrm{d}x = c \int_\Omega u(x)\operatorname{div}\boldsymbol{\phi}(x)\,\mathrm{d}x = -c \int_\Omega \langle \boldsymbol{\phi}(x), Du(x)\rangle </math> for all <math> c\in\mathbb{R}</math>, therefore <math> cu\in \operatorname\operatorname{BV}(\Omega)</math> for all <math> u\in \operatorname\operatorname{BV}(\Omega)</math>, and all <math> c\in\mathbb{R}</math>. The proved [[vector space]] properties imply that '''<math>\operatorname\operatorname{BV}(\Omega)</math>''' is a [[vector subspace]] of '''[[Lp space|<math>L^1(\Omega)</math>]]'''. Consider now the function <math>\|\;\|_{\operatorname{BV}}:\operatorname\operatorname{BV}(\Omega)\rightarrow\mathbb{R}^+</math> defined as :<math>\| u \|_{\operatorname{BV}} := \| u \|_{L^1} + V(u,\Omega)</math> where <math>\| \; \|_{L^1}</math> is the usual '''[[Lp space#Lp spaces and Lebesgue integrals|<math>L^1(\Omega)</math> norm]]''': it is easy to prove that this is a [[norm (mathematics)|norm]] on '''<math>\operatorname\operatorname{BV}(\Omega)</math>'''. To see that '''<math>\operatorname\operatorname{BV}(\Omega)</math>''' is [[complete metric space|complete]] respect to it, i.e. it is a [[Banach space]], consider a [[Cauchy sequence]] <math>\{u_n\}_{n\in\mathbb{N}}</math> in '''<math>\operatorname\operatorname{BV}(\Omega)</math>'''. By definition it is also a [[Cauchy sequence]] in '''<math>L^1(\Omega)</math>''' and therefore has a [[limit of a sequence|limit]] '''<math>u</math>''' in '''<math>L^1(\Omega)</math>''': since '''<math>u_n</math>''' is bounded in '''<math>\operatorname\operatorname{BV}(\Omega)</math>''' for each '''<math>n</math>''', then <math>\Vert u \Vert_{\operatorname{BV}} < +\infty </math> by [[semicontinuity|lower semicontinuity]] of the variation <math>V(\cdot,\Omega)</math>, therefore '''<math>u</math>''' is a BV function. Finally, again by lower semicontinuity, choosing an arbitrary small positive number '''<math>\varepsilon</math>''' :<math>\Vert u_j - u_k \Vert_{\operatorname{BV}}<\varepsilon\quad\forall j,k\geq N\in\mathbb{N} \quad\Rightarrow\quad V(u_k-u,\Omega)\leq \liminf_{j\rightarrow +\infty} V(u_k-u_j,\Omega)\leq\varepsilon</math> From this we deduce that <math>V(\cdot,\Omega)</math> is continuous because it's a norm. ===BV(Ω) is not separable=== To see this, it is sufficient to consider the following example belonging to the space '''<math>\operatorname\operatorname{BV}([0,1])</math>''':<ref>The example is taken from {{Harvtxt|Giaquinta|Modica|Souček|1998|p=331}}: see also {{harv|Kannan|Krueger|1996|loc=example 9.4.1, p. 237}}.</ref> for each 0 < ''α'' < 1 define :<math>\chi_\alpha=\chi_{[\alpha,1]}= \begin{cases} 0 & \mbox{if } x \notin\; [\alpha,1] \\ 1 & \mbox{if } x \in [\alpha,1] \end{cases} </math> as the [[indicator function|characteristic function]] of the [[Interval (mathematics)#Definitions|left-closed interval]] <math>[\alpha,1]</math>. Then, choosing <math>\alpha,\beta \in [0,1]</math> such that <math>\alpha \ne \beta</math> the following relation holds true: :<math>\Vert \chi_\alpha - \chi_\beta \Vert_{\operatorname{BV}}=2</math> Now, in order to prove that every [[Dense set|dense subset]] of '''<math>\operatorname\operatorname{BV}(]0,1[)</math>''' cannot be [[countable set|countable]], it is sufficient to see that for every <math>\alpha\in[0,1]</math> it is possible to construct the [[Ball (mathematics)|ball]]s :<math>B_\alpha=\left\{\psi\in \operatorname\operatorname{BV}([0,1]);\Vert \chi_\alpha - \psi \Vert_{\operatorname{BV}}\leq 1\right\}</math> Obviously those balls are [[Disjoint sets|pairwise disjoint]], and also are an [[indexed family]] of [[set (mathematics)|set]]s whose [[index set]] is <math>[0,1]</math>. This implies that this family has the [[cardinality of the continuum]]: now, since every dense subset of <math>\operatorname\operatorname{BV}([0,1])</math> must have at least a point inside each member of this family, its cardinality is at least that of the continuum and therefore cannot a be countable subset.<ref>The same argument is used by {{Harvtxt|Kolmogorov|Fomin|1969|loc=example 7, pp. 48–49}}, in order to prove the non [[Separable space|separability]] of the space of [[bounded sequence]]s, and also {{harvtxt|Kannan|Krueger|1996|loc=example 9.4.1, p. 237}}.</ref> This example can be obviously extended to higher dimensions, and since it involves only [[Local property|local properties]], it implies that the same property is true also for '''<math>\operatorname{BV}_{loc}</math>'''. ===Chain rule for locally BV(Ω) functions=== [[Chain rule]]s for [[smooth function|nonsmooth function]]s are very important in [[mathematics]] and [[mathematical physics]] since there are several important [[Mathematical model|physical model]]s whose behaviors are described by [[Function (mathematics)|functions]] or [[functional (mathematics)|functional]]s with a very limited degree of [[Smooth function|smoothness]]. The following chain rule is proved in the paper {{Harv|Vol'pert|1967|p=248}}. Note all [[partial derivative]]s must be interpreted in a generalized sense, i.e., as [[Generalized derivative#Basic idea|generalized derivative]]s. '''Theorem'''. Let <math>f:\mathbb{R}^p\rightarrow\mathbb{R}</math> be a function of class '''<math>C^1</math>''' (i.e. a [[continuous function|continuous]] and [[differentiable function]] having [[continuous function|continuous]] [[derivative]]s) and let <math>\boldsymbol{u}(\boldsymbol{x})=(u_1(\boldsymbol{x}),\ldots,u_p(\boldsymbol{x})) </math> be a function in '''<math>\operatorname\operatorname{BV}_{loc} (\Omega)</math>''' with '''<math> \Omega </math>''' being an [[open subset]] of <math> \mathbb{R}^n </math>. Then <math>f\circ\boldsymbol{u}(\boldsymbol{x})=f(\boldsymbol{u}(\boldsymbol{x}))\in \operatorname\operatorname{BV}_{loc} (\Omega) </math> and :<math>\frac{\partial f(\boldsymbol{u}(\boldsymbol{x}))}{\partial x_i}=\sum_{k=1}^p\frac{\partial\bar{f}(\boldsymbol{u}(\boldsymbol{x}))}{\partial u_k}\frac{\partial{u_k(\boldsymbol{x})}}{\partial x_i} \qquad\forall i=1,\ldots,n</math> where <math>\bar f(\boldsymbol{u}(\boldsymbol{x}))</math> is the mean value of the function at the point '''<math>x \in\Omega</math>''', defined as :<math>\bar f(\boldsymbol{u}(\boldsymbol{x})) = \int_0^1 f\left(\boldsymbol{u}_{\boldsymbol{\hat a}}(\boldsymbol{x})t + \boldsymbol{u}_{-\boldsymbol{\hat a}}(\boldsymbol{x})(1-t)\right) \, dt</math> A more general [[chain rule]] [[formula]] for [[lipschitz continuity|Lipschitz continuous functions]] <math>f:\mathbb{R}^p\rightarrow\mathbb{R}^s</math> has been found by [[Luigi Ambrosio]] and [[Gianni Dal Maso]] and is published in the paper {{Harv|Ambrosio|Dal Maso|1990}}. However, even this formula has very important direct consequences: we use <math>( u(\boldsymbol{x}), v(\boldsymbol{x}))</math> in place of <math>\boldsymbol u(\boldsymbol{x})</math>, where <math>v(\boldsymbol{x})</math> is also a <math>BV_{loc}</math> function. We have to assume also that <math>\bar u(\boldsymbol{x})</math> is locally integrable with respect to the measure <math>\frac{\partial v(\boldsymbol{x})}{\partial x_i}</math> for each <math>i</math>, and that <math>\bar v(\boldsymbol{x})</math> is locally integrable with respect to the measure <math>\frac{\partial u(\boldsymbol{x})}{\partial x_i}</math> for each <math>i</math>. Then choosing <math>f((u,v))=uv</math>, the preceding formula gives the '''''[[Product rule|Leibniz rule]]''''' for 'BV' functions :<math>\frac{\partial v(\boldsymbol{x})u(\boldsymbol{x})}{\partial x_i} = {\bar u(\boldsymbol{x})}\frac{\partial v(\boldsymbol{x})}{\partial x_i} + {\bar v(\boldsymbol{x})}\frac{\partial u(\boldsymbol{x})}{\partial x_i} </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)