Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
CIELAB color space
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===From CIE XYZ to CIELAB=== :<math>\begin{align} L^\star &= 116 \, f{\bigl(Y/Y_\mathrm{n}\bigr)} - 16, \\[5mu] a^\star &= 500 \bigl(f(X/X_\mathrm{n}) - f(Y/Y_\mathrm{n})\bigr)\\[5mu] b^\star &= 200 \bigl(f(Y/Y_\mathrm{n}) - f(Z/Z_\mathrm{n})\bigr) \end{align}</math> where ''t'' is <math>X/X_\mathrm{n},</math> <math>Y/Y_\mathrm{n},</math> or <math>Z/Z_\mathrm{n}</math>: :<math>\begin{align} f(t) &= \begin{cases} \sqrt[3]{t} & \text{if } t > \delta^3 \\[4mu] \tfrac13 t \delta^{-2} + \tfrac{4}{29} & \text{otherwise} \end{cases} \\ \delta &= \tfrac{6}{29} \end{align}</math> {{mvar|X}}, {{mvar|Y}}, and {{mvar|Z}} describe the color stimulus considered and {{math|''X''<sub>n</sub>}}, {{math|''Y''<sub>n</sub>}}, {{math|''Z''<sub>n</sub>}} describe a specified white achromatic reference illuminant. for the CIE 1931 (2°) standard colorimetric observer and assuming normalization where the reference white has {{math|1=''Y'' = 100}}, the values are: For [[Illuminant D65|Standard Illuminant D65]]: :<math>\begin{align} X_{\mathrm{n}}&=95.0489,\\ Y_{\mathrm{n}}&=100,\\ Z_{\mathrm{n}}&=108.8840 \end{align}</math> For [[Standard illuminant#Illuminant series D|illuminant D50]], which is used in the printing industry: :<math>\begin{align} X_{\mathrm{n}}&=96.4212,\\ Y_{\mathrm{n}}&=100,\\ Z_{\mathrm{n}}&=82.5188 \end{align}</math> The division of the domain of the {{mvar|f}} function into two parts was done to prevent an infinite slope at {{math|1=''t'' = 0}}. The function {{mvar|f}} was assumed to be linear below some {{math|1=''t'' = ''t''<sub>0</sub>}} and was assumed to match the <math>\sqrt[3]t</math> part of the function at {{math|''t''<sub>0</sub>}} in both value and slope. In other words: :<math>\begin{align} \sqrt[3]{t_0} &= m t_0 + c & \text{ (match in value)}\\[3mu] \tfrac13 \left(t_0\right)^{-2/3} &= m & \text{ (match in slope)} \end{align}</math> The intercept {{math|1=''f''(0) = ''c''}} was chosen so that {{math|''L''*}} would be 0 for {{math|1=''Y'' = 0}}: {{math|1=''c'' = {{sfrac|16|116}} = {{sfrac|4|29}}}}. The above two equations can be solved for {{math|''m''}} and {{math|''t''<sub>0</sub>}}: :<math>\begin{align} m &= \tfrac13\delta^{-2} &= 7.787037\ldots\\ t_0 &= \delta^3 &= 0.008856\ldots \end{align}</math> where {{math|1=''δ'' = {{sfrac|6|29}}}}.<ref> {{cite book | title = Colorimetry | author = János Schanda | publisher = Wiley-Interscience | year = 2007 | isbn = 978-0-470-04904-4 | page = 61 | url = https://books.google.com/books?id=uZadszSGe9MC&q=lab+color+6-29+16-116&pg=PA61 }}</ref> <ref>{{Cite web|title=CIE 1976 L*a*b* colour space {{!}} eilv|url=http://eilv.cie.co.at/term/157|archive-url=https://web.archive.org/web/20191228145700/http://eilv.cie.co.at/term/157|url-status=dead|archive-date=2019-12-28|access-date=2020-12-12|website=eilv.cie.co.at}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)