Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Calculus of variations
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Du Bois-Reymond's theorem == The discussion thus far has assumed that extremal functions possess two continuous derivatives, although the existence of the integral <math>J</math> requires only first derivatives of trial functions. The condition that the first variation vanishes at an extremal may be regarded as a '''weak form''' of the Euler–Lagrange equation. The theorem of Du Bois-Reymond asserts that this weak form implies the strong form. If <math>L</math> has continuous first and second derivatives with respect to all of its arguments, and if <math display="block">\frac{\partial^2 L}{\partial f'^2} \ne 0,</math> then <math>f</math> has two continuous derivatives, and it satisfies the Euler–Lagrange equation.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)