Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Canonical correlation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Practical uses== A typical use for canonical correlation in the experimental context is to take two sets of variables and see what is common among the two sets.<ref>{{cite book|last= Sieranoja|first=S.|author2=Sahidullah, Md| author3=Kinnunen, T.| author4= Komulainen, J.| author5= Hadid, A.|title=2018 IEEE 3rd International Conference on Signal and Image Processing (ICSIP) |chapter=Audiovisual Synchrony Detection with Optimized Audio Features |date=July 2018|pages=377β381 |doi=10.1109/SIPROCESS.2018.8600424 |isbn=978-1-5386-6396-7 |s2cid=51682024 |url=http://urn.fi/urn:nbn:fi-fe2020041415345 |chapter-url=http://cs.joensuu.fi/pages/tkinnu/webpage/pdf/audiovisual_synchrony_2018.pdf}}</ref> For example, in psychological testing, one could take two well established multidimensional [[personality tests]] such as the [[Minnesota Multiphasic Personality Inventory]] (MMPI-2) and the [[Neuroticism Extraversion Openness Personality Inventory|NEO]]. By seeing how the MMPI-2 factors relate to the NEO factors, one could gain insight into what dimensions were common between the tests and how much variance was shared. For example, one might find that an [[Extraversion and introversion|extraversion]] or [[neuroticism]] dimension accounted for a substantial amount of shared variance between the two tests. One can also use canonical-correlation analysis to produce a model equation which relates two sets of variables, for example a set of performance measures and a set of explanatory variables, or a set of outputs and set of inputs. Constraint restrictions can be imposed on such a model to ensure it reflects theoretical requirements or intuitively obvious conditions. This type of model is known as a maximum correlation model.<ref>{{Cite journal | last1 = Tofallis | first1 = C. | title = Model Building with Multiple Dependent Variables and Constraints | doi = 10.1111/1467-9884.00195 | journal = Journal of the Royal Statistical Society, Series D | volume = 48 | issue = 3 | pages = 371β378 | year = 1999 | arxiv = 1109.0725| s2cid = 8942357 }}</ref> Visualization of the results of canonical correlation is usually through bar plots of the coefficients of the two sets of variables for the pairs of canonical variates showing significant correlation. Some authors suggest that they are best visualized by plotting them as heliographs, a circular format with ray like bars, with each half representing the two sets of variables.<ref>{{Cite book | last1 = Degani | first1 = A. | last2 = Shafto | first2 = M. | last3 = Olson | first3 = L. | doi = 10.1007/11783183_11 | chapter = Canonical Correlation Analysis: Use of Composite Heliographs for Representing Multiple Patterns | title = Diagrammatic Representation and Inference | series = Lecture Notes in Computer Science | volume = 4045 | pages = 93 | year = 2006 | isbn = 978-3-540-35623-3 | chapter-url = http://ti.arc.nasa.gov/m/profile/adegani/Composite_Heliographs.pdf| citeseerx = 10.1.1.538.5217 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)