Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cayley transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Other matrices === One can extend the mapping to [[complex number|complex]] matrices by substituting "[[unitary matrix|unitary]]" for "orthogonal" and "[[skew-Hermitian matrix|skew-Hermitian]]" for "skew-symmetric", the difference being that the transpose (Β·<sup>T</sup>) is replaced by the [[conjugate transpose]] (Β·<sup>H</sup>). This is consistent with replacing the standard real [[inner product]] with the standard complex inner product. In fact, one may extend the definition further with choices of [[Hermitian adjoint|adjoint]] other than transpose or conjugate transpose. Formally, the definition only requires some invertibility, so one can substitute for ''Q'' any matrix ''M'' whose eigenvalues do not include β1. For example, :<math> \begin{bmatrix} 0 & -a & ab - c \\ 0 & 0 & -b \\ 0 & 0 & 0 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 2a & 2c \\ 0 & 1 & 2b \\ 0 & 0 & 1 \end{bmatrix} . </math> Note that ''A'' is skew-symmetric (respectively, skew-Hermitian) if and only if ''Q'' is orthogonal (respectively, unitary) with no eigenvalue β1.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)