Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Character table
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Calculating the irreducible representation Γ<sub>irreducible</sub> from the reducible representation Γ<sub>reducible</sub> along with the character table === From the above discussion, a new character table for a water molecule (<math>C_{2v}</math> point group) can be written as : {| class="wikitable" |+New character table for <chem>H2O</chem> molecule including <math>\Gamma_{\text{red}}</math> ! !<math>E</math> !<math>C_2</math> !<math>\sigma_{v(xz)}</math> !<math>\sigma'_{v(yz)}</math> |- |<math>A_1</math> |1 |1 |1 |1 |- |<math>A_2</math> |1 |1 | −1 | −1 |- |<math>B_1</math> |1 | −1 |1 | −1 |- |<math>B_2</math> |1 | −1 | −1 |1 |- |<math>\Gamma_{\text{red}}</math> |9 | −1 |3 |1 |} Using the new character table including <math>\Gamma_{\text{red}}</math>, the reducible representation for all motion of the <chem>H2O</chem> molecule can be reduced using below formula : <math>N = \frac{1}{h}\sum_{x}(X^x_i \times X^x_r\times n^x)</math> where, : <math>h =</math> order of the group, : <math>X^x_i =</math> character of the <math>\Gamma_{\text{reducible}}</math> for a particular class, : <math>X^x_r =</math> character from the reducible representation for a particular class, : <math>n^x =</math> the number of operations in the class So, <math>N_{A_1} = \frac{1}{4}[(9\times 1\times 1)+((-1)\times 1\times 1)+(3\times 1\times 1)+(1\times 1\times 1)] = 3</math> <math>N_{A_2} = \frac{1}{4}[(9\times 1\times 1+((-1)\times 1\times 1)+(3\times(-1)\times 1)+(1\times(-1)\times 1)] = 1</math> <math>N_{B_1} = \frac{1}{4}[(9\times 1\times 1)+((-1)\times(-1)\times 1)+(3\times 1\times 1)+(1\times(-1)\times 1)] = 3</math> <math>N_{B_2} = \frac{1}{4}[(9\times 1\times 1)+((-1)\times(-1)\times 1)+(3\times(-1)\times 1)+(1\times 1\times 1)] = 2</math> So, the reduced representation for all motions of water molecule will be <math>\Gamma_{\text{irreducible}} = 3A_1 + A_2 + 3B_1 + 2B_2</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)