Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Color balance
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Scaling X, Y, Z=== If the image may be transformed into [[CIE 1931 color space|CIE XYZ tristimulus values]], the color balancing may be performed there. This has been termed a "wrong von Kries" transformation.<ref name=Terstiege1972>{{Cite journal | author = Heinz Terstiege | title = Chromatic adaptation: a state-of-the-art report | year = 1972 | journal = Journal of Color Appearance | volume = 1 | issue = 4 | pages = 19β23 (cont. 40) }}</ref><ref name="Fairchild1998">Mark D Fairchild, ''Color Appearance Models.'' Reading, MA: Addison-Wesley, 1998.</ref> Although it has been demonstrated to offer usually poorer results than balancing in monitor RGB, it is mentioned here as a bridge to other things. Mathematically, one computes: :<math>\left[\begin{array}{c} X \\ Y \\ Z \end{array}\right]=\left[\begin{array}{ccc}X_w/X'_w & 0 & 0 \\ 0 & Y_w/Y'_w & 0 \\ 0 & 0 & Z_w/Z'_w\end{array}\right]\left[\begin{array}{c}X' \\ Y' \\ Z' \end{array}\right]</math> where <math>X</math>, <math>Y</math>, and <math>Z</math> are the color-balanced tristimulus values; <math>X_w</math>, <math>Y_w</math>, and <math>Z_w</math> are the tristimulus values of the viewing illuminant (the white point to which the image is being transformed to conform to); <math>X'_w</math>, <math>Y'_w</math>, and <math>Z'_w</math> are the tristimulus values of an object believed to be white in the un-color-balanced image, and <math>X'</math>, <math>Y'</math>, and <math>Z'</math> are the tristimulus values of a pixel in the un-color-balanced image. If the tristimulus values of the monitor primaries are in a matrix <math>\mathbf{P}</math> so that: :<math>\left[\begin{array}{c} X \\ Y \\ Z \end{array}\right]=\mathbf{P}\left[\begin{array}{c}L_R \\ L_G \\ L_B \end{array}\right]</math> where <math>L_R</math>, <math>L_G</math>, and <math>L_B</math> are the un-[[gamma correction|gamma corrected]] monitor RGB, one may use: :<math>\left[\begin{array}{c} L_R \\ L_G \\ L_B \end{array}\right]=\mathbf{P^{-1}}\left[\begin{array}{ccc}X_w/X'_w & 0 & 0 \\ 0 & Y_w/Y'_w & 0 \\ 0 & 0 & Z_w/Z'_w\end{array}\right]\mathbf{P}\left[\begin{array}{c}L_{R'} \\ L_{G'} \\ L_{B'} \end{array}\right]</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)