Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Commutator
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Exponential identities ==== Consider a ring or algebra in which the [[exponential function|exponential]] <math>e^A = \exp(A) = 1 + A + \tfrac{1}{2!}A^2 + \cdots</math> can be meaningfully defined, such as a [[Banach algebra]] or a ring of [[formal power series]]. In such a ring, [[Hadamard's lemma]] applied to nested commutators gives: <math display="inline">e^A Be^{-A} \ =\ B + [A, B] + \frac{1}{2!}[A, [A, B]] + \frac{1}{3!}[A, [A, [A, B]]] + \cdots \ =\ e^{\operatorname{ad}_A}(B). </math> (For the last expression, see ''Adjoint derivation'' below.) This formula underlies the [[Baker–Campbell–Hausdorff formula#An important lemma|Baker–Campbell–Hausdorff expansion]] of log(exp(''A'') exp(''B'')). A similar expansion expresses the group commutator of expressions <math>e^A</math> (analogous to elements of a [[Lie group]]) in terms of a series of nested commutators (Lie brackets), <math display="block">e^A e^B e^{-A} e^{-B} = \exp\!\left( [A, B] + \frac{1}{2!}[A{+}B, [A, B]] + \frac{1}{3!} \left(\frac{1}{2} [A, [B, [B, A]]] + [A{+}B, [A{+}B, [A, B]]]\right) + \cdots\right). </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)