Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Connection (principal bundle)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Examples == === Maurer-Cartan connection === For the trivial principal <math>G</math>-bundle <math>\pi:E \to X</math> where <math>E = G\times X</math>, there is a canonical connection<ref name=":0">{{Cite web |last=Dupont |first=Johan |date=August 2003 |title=Fibre Bundles and Chern-Weil Theory |url=http://www.johno.dk/mathematics/fiberbundlestryk.pdf |archive-url=https://web.archive.org/web/20220331053124/http://www.johno.dk/mathematics/fiberbundlestryk.pdf |archive-date=31 March 2022}}</ref><sup>pg 49</sup><blockquote><math>\omega_{MC} \in \Omega^1(E,\mathfrak{g})</math></blockquote>called the Maurer-Cartan connection. It is defined at a point <math>(g,x) \in G\times X</math> by<blockquote><math>(\omega_{MC})_{(g,x)} = (L_{g^{-1}}\circ \pi_1)_*</math> for <math>x \in X, g \in G</math></blockquote>which is a composition<blockquote><math>T_{(g,x)}E \xrightarrow{\pi_{1*}} T_gG \xrightarrow{(L_{g^{-1}})_*} T_eG = \mathfrak{g}</math></blockquote>defining the 1-form. Note that<blockquote><math>\omega_0 = (L_{g^{-1}})_*: T_gG \to T_eG = \mathfrak{g}</math></blockquote>is the [[Maurer-Cartan form]] on the Lie group <math>G</math> and <math>\omega_{MC} = \pi_1^*\omega_0</math>. === Trivial bundle === For a trivial principal <math>G</math>-bundle <math>\pi:E \to X</math>, the identity section <math>i: X \to G\times X</math> given by <math>i(x) = (e,x)</math> defines a 1-1 correspondence<blockquote><math>i^*:\Omega^1(E,\mathfrak{g}) \to \Omega^1(X,\mathfrak{g})</math></blockquote>between connections on <math>E</math> and <math>\mathfrak{g}</math>-valued 1-forms on <math>X</math><ref name=":0" /><sup>pg 53</sup>. For a <math>\mathfrak{g}</math>-valued 1-form <math>A</math> on <math>X</math>, there is a unique 1-form <math>\tilde{A}</math> on <math>E</math> such that # <math>\tilde{A}(X) = 0</math> for <math>X \in T_xE</math> a vertical vector # <math>R_g^*\tilde{A} = \text{Ad}(g^{-1}) \circ \tilde{A}</math> for any <math>g \in G</math> Then given this 1-form, a connection on <math>E</math> can be constructed by taking the sum<blockquote><math>\omega_{MC} + \tilde{A}</math></blockquote>giving an actual connection on <math>E</math>. This unique 1-form can be constructed by first looking at it restricted to <math>(e,x)</math> for <math>x \in X</math>. Then, <math>\tilde{A}_{(e,x)}</math> is determined by <math>A</math> because <math>T_{(x,e)}E = ker(\pi_*)\oplus i_*T_xX</math> and we can get <math>\tilde{A}_{(g,x)}</math>by taking<blockquote><math>\tilde{A}_{(g,x)} = R^*_g\tilde{A}_{(e,x)} = \text{Ad}(g^{-1})\circ \tilde{A}_{(e,x)}</math></blockquote>Similarly, the form<blockquote><math>\tilde{A}_{(x,g)} = \text{Ad}(g^{-1}) \circ A_x \circ \pi_*: T_{(x,g)}E \to \mathfrak{g} </math></blockquote>defines a 1-form giving the properties 1 and 2 listed above. ==== Extending this to non-trivial bundles ==== This statement can be refined<ref name=":0" /><sup>pg 55</sup> even further for non-trivial bundles <math>E \to X</math> by considering an open covering <math>\mathcal{U} = \{U_a\}_{a \in I}</math> of <math>X</math> with [[Trivialization (mathematics)|trivializations]] <math>\{\phi_a\}_{a \in I}</math> and transition functions <math>\{g_{ab}\}_{a,b\in I}</math>. Then, there is a 1-1 correspondence between connections on <math>E</math> and collections of 1-forms<blockquote><math>\{A_a \in \Omega_1(U_a,\mathfrak{g}) \}_{a \in I}</math></blockquote>which satisfy<blockquote><math>A_b = Ad(g_{ab}^{-1})\circ A_a + g_{ab}^*\omega_0</math></blockquote>on the intersections <math>U_{ab}</math> for <math>\omega_0</math> the [[Maurer–Cartan form|Maurer-Cartan form]] on <math>G</math>, <math>\omega_0 = g^{-1}dg</math> in matrix form. ==== Global reformulation of space of connections ==== For a principal <math>G</math> bundle <math>\pi: E \to M</math> the set of connections in <math>E</math> is an affine space<ref name=":0" /><sup>pg 57</sup> for the vector space <math>\Omega^1(M,E_\mathfrak{g})</math> where <math>E_\mathfrak{g}</math> is the associated adjoint vector bundle. This implies for any two connections <math>\omega_0, \omega_1</math> there exists a form <math>A \in \Omega^1(M, E_\mathfrak{g})</math> such that<blockquote><math>\omega_0 = \omega_1 + A</math></blockquote>We denote the set of connections as <math>\mathcal{A}(E)</math>, or just <math>\mathcal{A}</math> if the context is clear. === Connection on the complex Hopf-bundle === We<ref name=":0" /><sup>pg 94</sup> can construct <math>\mathbb{CP}^n</math> as a principal <math>\mathbb{C}^*</math>-bundle <math>\gamma:H_\mathbb{C} \to \mathbb{CP}^n</math> where <math>H_\mathbb{C} = \mathbb{C}^{n+1}-\{0\}</math> and <math>\gamma</math> is the projection map<blockquote><math>\gamma(z_0,\ldots,z_n) = [z_0,\ldots,z_n]</math></blockquote>Note the Lie algebra of <math>\mathbb{C}^* = GL(1,\mathbb{C})</math> is just the complex plane. The 1-form <math>\omega \in \Omega^1(H_\mathbb{C},\mathbb{C})</math> defined as<blockquote><math>\begin{align} \omega &= \frac{\overline{z}^tdz}{|z|^2} \\ &= \sum_{i=0}^n\frac{\overline{z}_i}{|z|^2}dz_i \end{align}</math></blockquote>forms a connection, which can be checked by verifying the definition. For any fixed <math>\lambda \in \mathbb{C}^*</math> we have<blockquote><math>\begin{align} R_\lambda^*\omega &= \frac{\overline{(z\lambda)}^td(z\lambda)}{|z\lambda|^2} \\ &= \frac{ \overline{\lambda}\lambda\overline{z}^tdz }{|\lambda|^2\cdot |z|^2} \end{align}</math></blockquote>and since <math>|\lambda|^2 = \overline{\lambda}{\lambda}</math>, we have <math>\mathbb{C}^*</math>-invariance. This is because the adjoint action is trivial since the Lie algebra is Abelian. For constructing the splitting, note for any <math>z \in H_\mathbb{C}</math> we have a short exact sequence<blockquote><math>0 \to \mathbb{C} \xrightarrow{v_z} T_zH_\mathbb{C} \xrightarrow{\gamma_*} T_{[z]}\mathbb{CP}^n \to 0</math></blockquote>where <math>v_z</math> is defined as<blockquote><math>v_z(\lambda) = z\cdot \lambda</math></blockquote>so it acts as scaling in the fiber (which restricts to the corresponding <math>\mathbb{C}^*</math>-action). Taking <math>\omega_z\circ v_z(\lambda)</math> we get <math>\begin{align} \omega_z\circ v_z(\lambda) &= \frac{\overline{z}dz}{|z|^2}(z\lambda) \\ &= \frac{\overline{z}z\lambda}{|z|^2} \\ &= \lambda \end{align}</math> where the second equality follows because we are considering <math>z\lambda</math> a vertical tangent vector, and <math>dz(z\lambda) = z\lambda</math>. The notation is somewhat confusing, but if we expand out each term<blockquote><math>\begin{align} dz &= dz_0 + \cdots + dz_n \\ z &= a_0z_0 + \cdots +a_nz_n \\ dz(z) &= a_0 + \cdots + a_n \\ dz(\lambda z) &= \lambda\cdot (a_0 + \cdots + a_n) \\ \overline{z} &= \overline{a_0} + \cdots + \overline{a_n} \end{align}</math></blockquote>it becomes more clear (where <math>a_i \in \mathbb{C}</math>).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)