Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Continuous functional calculus
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Absolute value === If <math>a \in \mathcal{A}</math>, then the element <math>a^*a</math> is positive, so that the absolute value can be defined by the continuous functional calculus <math>|a| = \sqrt{a^*a}</math>, since it is continuous on the positive real {{nowrap|numbers.{{sfn|Blackadar|2006|pages=64-65}}}} Let <math>a</math> be a self-adjoint element of a C*-algebra <math>\mathcal{A}</math>, then there exist positive elements <math>a_+,a_- \in \mathcal{A}_+</math>, such that <math>a = a_+ - a_-</math> with <math>a_+ a_- = a_- a_+ = 0</math> holds. The elements <math>a_+</math> and <math>a_-</math> are also referred to as the {{nowrap|[[positive and negative parts]].{{sfn|Kadison|Ringrose|1983|p=246}}}} In addition, <math>|a| = a_+ + a_-</math> {{nowrap|holds.{{sfn|Dixmier|1977|p=15}}}} ''Proof.'' The functions <math>f_+(z) = \max(z,0)</math> and <math>f_-(z) = -\min(z, 0)</math> are continuous functions on <math>\sigma(a) \subseteq \R</math> with <math>\operatorname{Id} (z) = z = f_+(z) -f_-(z)</math> and {{nowrap|<math>f_+(z)f_-(z) = f_-(z)f_+(z) = 0</math>.}} Put <math>a_+ = f_+(a)</math> and <math>a_- = f_-(a)</math>. According to the spectral mapping theorem, <math>a_+</math> and <math>a_-</math> are positive elements for which <math>a = \operatorname{Id}(a) = (f_+ - f_-) (a) = f_+(a) - f_-(a) = a_+ - a_-</math> and <math>a_+ a_- = f_+(a)f_-(a) = (f_+f_-)(a) = 0 = (f_-f_+)(a) = f_-(a)f_+(a) = a_- a_+</math> {{nowrap|holds.{{sfn|Kadison|Ringrose|1983|p=246}}}} Furthermore, <math display="inline">f_+(z) + f_-(z) = |z| = \sqrt{z^* z} = \sqrt{z^2}</math>, such that {{nowrap|<math display="inline">a_+ + a_- = f_+(a) + f_-(a) = |a| = \sqrt{a^* a} = \sqrt{a^2}</math> holds.{{sfn|Dixmier|1977|p=15}}}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)