Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Conway chained arrow notation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Graham's number== [[Graham's number]] cannot be expressed in Conway chained arrow notation, but it is bounded by the following: <math>3 \rightarrow 3 \rightarrow 64 \rightarrow 2 < G < 3 \rightarrow 3 \rightarrow 65 \rightarrow 2</math> '''Proof:''' We first define the intermediate function <math>f(n) = 3 \rightarrow 3 \rightarrow n = \begin{matrix} 3\underbrace{\uparrow \uparrow \cdots \uparrow}3 \\ \text{n arrows} \end{matrix}</math>, which can be used to define Graham's number as <math>G = f^{64}(4)</math>. (The superscript 64 denotes a [[Function composition#Functional powers|functional power]].) By applying rule 2 and rule 4 backwards, we simplify: <math>f^{64}(1)</math> :<math>= 3 \rightarrow 3 \rightarrow (3 \rightarrow 3 \rightarrow (\cdots (3 \rightarrow 3 \rightarrow (3 \rightarrow 3 \rightarrow 1))\cdots ))</math> (with 64 <math>3 \rightarrow 3</math>'s) :<math>= 3 \rightarrow 3 \rightarrow (3 \rightarrow 3 \rightarrow (\cdots (3 \rightarrow 3 \rightarrow (3 \rightarrow 3) \rightarrow 1) \cdots ) \rightarrow 1) \rightarrow 1</math> :<math>= 3 \rightarrow 3 \rightarrow 64 \rightarrow 2;</math> <math display="block"> \left. \begin{matrix} = &3\underbrace{\uparrow \uparrow \cdots\cdots\cdots\cdot \uparrow}3 \\ &3\underbrace{\uparrow \uparrow \cdots\cdots\cdots \uparrow}3 \\ &\underbrace{\qquad\;\; \vdots \qquad\;\;} \\ &3\underbrace{\uparrow \uparrow \cdots\cdot \uparrow}3 \\ &3\uparrow 3 \end{matrix} \right\} \text{64 layers} </math> <math>f^{64}(4) = G;</math> :<math>= 3 \rightarrow 3 \rightarrow (3 \rightarrow 3 \rightarrow (\cdots (3 \rightarrow 3 \rightarrow (3 \rightarrow 3 \rightarrow 4))\cdots ))</math> (with 64 <math>3 \rightarrow 3</math>'s) <math display="block"> \left. \begin{matrix} = &3\underbrace{\uparrow \uparrow \cdots\cdots\cdots\cdot \uparrow}3 \\ &3\underbrace{\uparrow \uparrow \cdots\cdots\cdots \uparrow}3 \\ &\underbrace{\qquad\;\; \vdots \qquad\;\;} \\ &3\underbrace{\uparrow \uparrow \cdots\cdot \uparrow}3 \\ &3\uparrow \uparrow \uparrow \uparrow 3 \end{matrix} \right\} \text{64 layers} </math> <math>f^{64}(27)</math> :<math>= 3 \rightarrow 3 \rightarrow (3 \rightarrow 3 \rightarrow (\cdots (3 \rightarrow 3 \rightarrow (3 \rightarrow 3 \rightarrow 27))\cdots ))</math> (with 64 <math>3 \rightarrow 3</math>'s) :<math>= 3 \rightarrow 3 \rightarrow (3 \rightarrow 3 \rightarrow (\cdots (3 \rightarrow 3 \rightarrow (3 \rightarrow 3 \rightarrow (3 \rightarrow 3)))\cdots ))</math> (with 65 <math>3 \rightarrow 3</math>'s) :<math>= 3 \rightarrow 3 \rightarrow 65 \rightarrow 2</math> (computing as above). :<math>= f^{65}(1)</math> <math display="block"> \left. \begin{matrix} = &3\underbrace{\uparrow \uparrow \cdots\cdots\cdots\cdot \uparrow}3 \\ &3\underbrace{\uparrow \uparrow \cdots\cdots\cdots \uparrow}3 \\ &\underbrace{\qquad\;\; \vdots \qquad\;\;} \\ &3\underbrace{\uparrow \uparrow \cdots\cdot \uparrow}3 \\ &3\uparrow 3 \end{matrix} \right\} \text{65 layers} </math> Since ''f'' is [[strictly increasing]], :<math>f^{64}(1) < f^{64}(4) < f^{64}(27)</math> which is the given inequality. With chained arrows, it is very easy to specify a number much greater than Graham's number, for example, <math> 3 \rightarrow 3 \rightarrow 3 \rightarrow 3 </math>. <math> 3 \rightarrow 3 \rightarrow 3 \rightarrow 3</math> :<math>= 3 \rightarrow 3 \rightarrow (3 \rightarrow 3 \rightarrow 27 \rightarrow 2) \rightarrow 2\, </math> :<math>= f^ {3 \rightarrow 3 \rightarrow 27 \rightarrow 2}(1) </math> :<math>= f^{f^{27}(1)}(1) </math> <math display="block"> \left. \begin{matrix} = &3\underbrace{\uparrow \uparrow \cdots\cdots\cdots\cdot\cdot \uparrow}3 \\ &3\underbrace{\uparrow \uparrow \cdots\cdots\cdots\cdot \uparrow}3 \\ &3\underbrace{\uparrow \uparrow \cdots\cdots\cdots \uparrow}3 \\ &\underbrace{\qquad\;\; \vdots \qquad\;\;} \\ &3\underbrace{\uparrow \uparrow \cdots\cdot \uparrow}3 \\ &3\uparrow 3 \end{matrix} \right\} \left. \begin{matrix} 3\underbrace{\uparrow \uparrow \cdots\cdots\cdots\cdot \uparrow}3 \\ 3\underbrace{\uparrow \uparrow \cdots\cdots\cdots \uparrow}3 \\ \underbrace{\qquad\;\; \vdots \qquad\;\;} \\ 3\underbrace{\uparrow \uparrow \cdots\cdot \uparrow}3 \\ 3\uparrow 3 \end{matrix} \right\} \ 27 </math> which is much greater than Graham's number, because the number <math>3 \rightarrow 3 \rightarrow 27 \rightarrow 2</math> <math>= f^{27}(1)</math> is much greater than <math>65</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)