Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Covariant derivative
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Vector fields=== Given a point {{mvar|p}} of the manifold {{mvar|M}}, a vector field <math>\mathbf{u} : M \to T_p M</math> defined in a neighborhood of {{mvar|p}} and a tangent vector <math>\mathbf{v} \in T_pM</math>, the covariant derivative of {{math|'''u'''}} at {{mvar|p}} along {{math|'''v'''}} is the tangent vector at {{mvar|p}}, denoted <math>(\nabla_\mathbf{v} \mathbf{u})_p</math>, such that the following properties hold (for any tangent vectors {{math|'''v'''}}, {{math|'''x'''}} and {{math|'''y'''}} at {{mvar|p}}, vector fields {{math|'''u'''}} and {{math|'''w'''}} defined in a neighborhood of {{mvar|p}}, scalar values {{mvar|g}} and {{mvar|h}} at {{mvar|p}}, and scalar function {{mvar|f}} defined in a neighborhood of {{mvar|p}}): # <math>\left(\nabla_\mathbf{v} \mathbf{u}\right)_p</math> is linear in <math>\mathbf{v}</math> so <math display="block">\left(\nabla_{g\mathbf{x} + h\mathbf{y}} \mathbf{u}\right)_p = g(p) \left(\nabla_\mathbf{x} \mathbf{u}\right)_p + h(p) \left(\nabla_\mathbf{y} \mathbf{u}\right)_p</math> # <math>\left(\nabla_\mathbf{v} \mathbf{u}\right)_p</math> is additive in <math>\mathbf{u}</math> so: <math display="block">\left(\nabla_\mathbf{v}\left[\mathbf{u} + \mathbf{w}\right]\right)_p = \left(\nabla_\mathbf{v} \mathbf{u}\right)_p + \left(\nabla_\mathbf{v} \mathbf{w}\right)_p</math> # <math>(\nabla_\mathbf{v} \mathbf{u})_p</math> obeys the [[product rule]]; i.e., where <math>\nabla_\mathbf{v}f</math> is defined above, <math display="block">\left(\nabla_\mathbf{v} \left[f\mathbf{u}\right]\right)_p = f(p)\left(\nabla_\mathbf{v} \mathbf{u})_p + (\nabla_\mathbf{v}f\right)_p\mathbf{u}_p.</math> Note that <math>\left(\nabla_\mathbf{v} \mathbf{u}\right)_p</math> depends not only on the value of {{math|'''u'''}} at {{mvar|p}} but also on values of {{math|'''u'''}} in a neighborhood of {{mvar|p}}, because the last property, the product rule, involves the directional derivative of {{mvar|f}} (by the vector {{math|'''v'''}}). If {{math|'''u'''}} and {{math|'''v'''}} are both vector fields defined over a common domain, then <math>\nabla_\mathbf{v}\mathbf u</math> denotes the vector field whose value at each point {{mvar|p}} of the domain is the tangent vector <math>\left(\nabla_\mathbf{v}\mathbf u\right)_p</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)