Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cronbach's alpha
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===A high value of Cronbach's alpha indicates homogeneity between the items=== Many textbooks refer to <math>\rho_{T}</math> as an indicator of [[Homogeneity and heterogeneity (statistics)|homogeneity]]<ref>{{Cite web|title=APA Dictionary of Psychology|url=https://dictionary.apa.org/|access-date=2023-02-20|website=dictionary.apa.org|language=en|archive-date=2019-07-31|archive-url=https://web.archive.org/web/20190731124940/http://dictionary.apa.org/|url-status=live}}</ref> between items. This misconception stems from the inaccurate explanation of Cronbach (1951)<ref name = Cronbach/> that high <math>\rho_{T}</math> values show homogeneity between the items. Homogeneity is a term that is rarely used in modern literature, and related studies interpret the term as referring to uni-dimensionality. Several studies have provided proofs or counterexamples that high <math>\rho_{T}</math> values do not indicate uni-dimensionality.<ref name=Cortina>{{cite journal|first=J. M.|last=Cortina|title=What is coefficient alpha? An examination of theory and applications|journal=Journal of Applied Psychology|volume=78|issue=1|pages=98β104|date=1993|doi=10.1037/0021-9010.78.1.98}}</ref><ref name=ChoKim/><ref name=GLM>{{cite journal|last1=Green|first1=S. B.|last2=Lissitz|first2=R. W.|last3=Mulaik|first3=S. A.|title=Limitations of coefficient alpha as an Index of test unidimensionality|journal=Educational and Psychological Measurement|volume=37|issue=4|pages=827β838|date=1977|doi=10.1177/001316447703700403|s2cid=122986180}}</ref><ref>{{cite journal|first=R. P.|last=McDonald|title=The dimensionality of tests and items|journal=The British Journal of Mathematical and Statistical Psychology|volume=34|issue=1|pages=100β117|date=1981|doi=10.1111/j.2044-8317.1981.tb00621.x}}</ref><ref>{{cite journal|first=N.|last=Schmitt|title=Uses and abuses of coefficient alpha|journal=Psychological Assessment|volume=8|issue=4|pages=350β3|date=1996|doi=10.1037/1040-3590.8.4.350}}</ref><ref name=TBC>{{cite journal|last1=Ten Berge|first1=J. M. F.|last2=SoΔan|first2=G.|title=The greatest lower bound to the reliability of a test and the hypothesis of unidimensionality|journal=Psychometrika|volume=69|issue=4|pages=613β625|date=2004|doi=10.1007/BF02289858|s2cid=122674001}}</ref> See counterexamples below. {| class="wikitable" style="text-align: right;" |+ Uni-dimensional data |- ! ! <math>X_1</math> ! <math>X_2</math> ! <math>X_3</math> ! <math>X_4</math> ! <math>X_5</math> ! <math>X_6</math> |- ! <math>X_1</math> | <math>10</math>||<math>3</math>||<math>3</math>||<math>3</math>||<math>3</math>||<math>3</math> |- ! <math>X_2</math> | <math>3</math>|| <math>10</math>|| <math>3</math>|| <math>3</math>|| <math>3</math>|| <math>3</math> |- ! <math>X_3</math> | <math>3</math>|| <math>3</math>|| <math>10</math>|| <math>3</math>|| <math>3</math>|| <math>3</math> |- ! <math>X_4</math> | <math>3</math>|| <math>3</math>|| <math>3</math>|| <math>10</math>|| <math>3</math>|| <math>3</math> |- ! <math>X_5</math> | <math>3</math>|| <math>3</math>|| <math>3</math>|| <math>3</math>|| <math>10</math>|| <math>3</math> |- ! <math>X_6</math> | <math>3</math>|| <math>3</math>|| <math>3</math>|| <math>3</math>|| <math>3</math>|| <math>10</math> |- |} <math>\rho_{T}=0.72</math> in the uni-dimensional data above. {| class="wikitable" style="text-align: right;" |+ Multidimensional data |- ! ! <math>X_1</math> ! <math>X_2</math> ! <math>X_3</math> ! <math>X_4</math> ! <math>X_5</math> ! <math>X_6</math> |- ! <math>X_1</math> | <math>10</math>||<math>6</math>||<math>6</math>||<math>1</math>||<math>1</math>||<math>1</math> |- ! <math>X_2</math> | <math>6</math>|| <math>10</math>|| <math>6</math>|| <math>1</math>|| <math>1</math>|| <math>1</math> |- ! <math>X_3</math> | <math>6</math>|| <math>6</math>|| <math>10</math>|| <math>1</math>|| <math>1</math>|| <math>1</math> |- ! <math>X_4</math> | <math>1</math>|| <math>1</math>|| <math>1</math>|| <math>10</math>|| <math>6</math>|| <math>6</math> |- ! <math>X_5</math> | <math>1</math>|| <math>1</math>|| <math>1</math>|| <math>6</math>|| <math>10</math>|| <math>6</math> |- ! <math>X_6</math> | <math>1</math>|| <math>1</math>|| <math>1</math>|| <math>6</math>|| <math>6</math>|| <math>10</math> |- |} <math>\rho_{T}=0.72</math> in the multidimensional data above. {| class="wikitable" style="text-align: right;" |+ Multidimensional data with extremely high reliability |- ! ! <math>X_1</math> ! <math>X_2</math> ! <math>X_3</math> ! <math>X_4</math> ! <math>X_5</math> ! <math>X_6</math> |- ! <math>X_1</math> | <math>10</math>||<math>9</math>||<math>9</math>||<math>8</math>||<math>8</math>||<math>8</math> |- ! <math>X_2</math> | <math>9</math>|| <math>10</math>|| <math>9</math>|| <math>8</math>|| <math>8</math>|| <math>8</math> |- ! <math>X_3</math> | <math>9</math>|| <math>9</math>|| <math>10</math>|| <math>8</math>|| <math>8</math>|| <math>8</math> |- ! <math>X_4</math> | <math>8</math>|| <math>8</math>|| <math>8</math>|| <math>10</math>|| <math>9</math>|| <math>9</math> |- ! <math>X_5</math> | <math>8</math>|| <math>8</math>|| <math>8</math>|| <math>9</math>|| <math>10</math>|| <math>9</math> |- ! <math>X_6</math> | <math>8</math>|| <math>8</math>|| <math>8</math>|| <math>9</math>|| <math>9</math>|| <math>10</math> |- |} The above data have <math>\rho_{T}=0.9692</math>, but are multidimensional. {| class="wikitable" style="text-align: right;" |+ Uni-dimensional data with unacceptably low reliability |- ! ! <math>X_1</math> ! <math>X_2</math> ! <math>X_3</math> ! <math>X_4</math> ! <math>X_5</math> ! <math>X_6</math> |- ! <math>X_1</math> | <math>10</math>||<math>1</math>||<math>1</math>||<math>1</math>||<math>1</math>||<math>1</math> |- ! <math>X_2</math> | <math>1</math>|| <math>10</math>|| <math>1</math>|| <math>1</math>|| <math>1</math>|| <math>1</math> |- ! <math>X_3</math> | <math>1</math>|| <math>1</math>|| <math>10</math>|| <math>1</math>|| <math>1</math>|| <math>1</math> |- ! <math>X_4</math> | <math>1</math>|| <math>1</math>|| <math>1</math>|| <math>10</math>|| <math>1</math>|| <math>1</math> |- ! <math>X_5</math> | <math>1</math>|| <math>1</math>|| <math>1</math>|| <math>1</math>|| <math>10</math>|| <math>1</math> |- ! <math>X_6</math> | <math>1</math>|| <math>1</math>|| <math>1</math>|| <math>1</math>|| <math>1</math>|| <math>10</math> |- |} The above data have <math>\rho_{T}=0.4</math>, but are uni-dimensional. Uni-dimensionality is a prerequisite for <math>\rho_{T}</math>. One should check uni-dimensionality before calculating <math>\rho_{T}</math> rather than calculating <math>\rho_{T}</math> to check uni-dimensionality.<ref name = Cho/>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)