Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
D'Alembert's principle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Formulation using the Lagrangian== D'Alembert's principle can be rewritten in terms of the Lagrangian <math>L=T-V</math> of the system as a generalized version of [[Hamilton's principle]] for the case of point particles, as follows, <math display="block">\delta \int_{t_1}^{t_2} L(\mathbf{r}, \dot{\mathbf{r}},t) dt + \sum_i\int_{t_1}^{t_2} \mathbf{F}_i \cdot \delta \mathbf r_i dt= 0,</math> where: * <math> \mathbf{r}=(\mathbf{r}_1,..., \mathbf{r} _N)</math> * <math> \mathbf{F}_i </math> are the applied forces * <math> \delta \mathbf{r}_i</math> is the virtual displacement of the <math>i</math>-th particle, consistent with the constraints <math>\sum_i\mathbf{C}_i \cdot \delta \mathbf{r} _i=0</math> * the critical curve satisfies the constraints <math>\sum_i\mathbf{C}_i \cdot \dot \mathbf{r} _i=0</math> With the Lagrangian <math display="block"> L(\mathbf{r}, \dot{\mathbf{r}},t) = \sum_i \frac{1}{2} m_i \dot { \mathbf{r} }_i^2,</math> the previous statement of d'Alembert principle is recovered.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)