Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
DNA computing
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Renewable (or reversible) DNA computing === Subsequent research on DNA computing has produced reversible DNA computing, bringing the technology one step closer to the silicon-based computing used in (for example) [[Personal computer|PC]]s. In particular, John Reif and his group at Duke University have proposed two different techniques to reuse the computing DNA complexes. The first design uses dsDNA gates,<ref>{{Cite journal|last1= Garg|first1= Sudhanshu|last2= Shah|first2= Shalin|last3= Bui|first3= Hieu|last4= Song|first4= Tianqi|last5= Mokhtar|first5= Reem|last6= Reif|first6= John|date= 2018|title= Renewable Time-Responsive DNA Circuits|journal= Small|language= en|volume= 14|issue= 33|pages= 1801470|doi= 10.1002/smll.201801470|pmid= 30022600|issn= 1613-6829|doi-access= free}}</ref> while the second design uses DNA hairpin complexes.<ref> {{Cite journal |last1= Eshra|first1= A.|last2= Shah|first2= S. |last3= Song|first3= T.|last4= Reif|first4= J. |date= 2019 |title= Renewable DNA hairpin-based logic circuits |journal= [[IEEE Transactions on Nanotechnology]] |volume= 18|pages= 252β259 |doi= 10.1109/TNANO.2019.2896189|issn= 1536-125X |arxiv= 1704.06371 |bibcode= 2019ITNan..18..252E|s2cid= 5616325}} </ref> While both designs face some issues (such as reaction leaks), this appears to represent a significant breakthrough in the field of DNA computing. Some other groups have also attempted to address the gate reusability problem.<ref>{{Cite journal|last1=Song|first1=Xin|last2=Eshra|first2=Abeer|last3=Dwyer|first3=Chris|last4=Reif|first4=John|date=2017-05-25|title=Renewable DNA seesaw logic circuits enabled by photoregulation of toehold-mediated strand displacement|journal=RSC Advances|language=en|volume=7|issue=45|pages=28130β28144|doi=10.1039/C7RA02607B|bibcode=2017RSCAd...728130S|issn=2046-2069|doi-access=free}}</ref><ref>{{Cite book|last1=Goel|first1=Ashish|last2=Ibrahimi|first2=Morteza|chapter=Renewable, Time-Responsive DNA Logic Gates for Scalable Digital Circuits |date=2009|editor-last=Deaton|editor-first=Russell|editor2-last=Suyama|editor2-first=Akira|title=DNA Computing and Molecular Programming|series=Lecture Notes in Computer Science|volume=5877|language=en|location=Berlin, Heidelberg|publisher=Springer|pages=67β77|doi=10.1007/978-3-642-10604-0_7|isbn=978-3-642-10604-0}}</ref> Using strand displacement reactions (SRDs), reversible proposals are presented in the "Synthesis Strategy of Reversible Circuits on DNA Computers" paper for implementing reversible gates and circuits on DNA computers by combining DNA computing and reversible computing techniques. This paper also proposes a universal reversible gate library (URGL) for synthesizing n-bit reversible circuits on DNA computers with an average length and cost of the constructed circuits better than the previous methods.<ref>{{Cite journal|last1=Rofail|first1=Mirna|last2=Younes|first2=Ahmed|date=July 2021|title=Synthesis Strategy of Reversible Circuits on DNA Computers|journal=Symmetry|language=en|volume=13|issue=7|pages=1242|doi=10.3390/sym13071242|bibcode=2021Symm...13.1242R|doi-access=free}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)