Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
De Finetti's theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Extensions == Versions of de Finetti's theorem for ''finite'' exchangeable sequences,<ref>{{cite journal |first1=P. |last1=Diaconis |author-link=Persi Diaconis |first2=D. |last2=Freedman |author-link2=David A. Freedman (statistician) |title=Finite exchangeable sequences |journal=Annals of Probability |volume=8 |issue=4 |year=1980 |pages=745–764 |doi=10.1214/aop/1176994663 |mr=577313 | zbl = 0434.60034 |doi-access=free }}</ref><ref>{{cite journal |first1=G. J. |last1=Szekely |author-link=Gabor J Szekely |first2= J. G. |last2=Kerns |title=De Finetti's theorem for abstract finite exchangeable sequences |journal=Journal of Theoretical Probability |volume=19 |issue=3 |year=2006 |pages= 589–608 |doi=10.1007/s10959-006-0028-z|s2cid=119981020 }} </ref> and for ''Markov exchangeable'' sequences<ref>{{cite journal |first1=P. |last1=Diaconis |author-link=Persi Diaconis |first2=D. |last2=Freedman |author-link2=David A. Freedman (statistician) |title=De Finetti's theorem for Markov chains |journal=Annals of Probability |volume=8 |issue=1 |year=1980 |pages=115–130 |doi=10.1214/aop/1176994828 |mr=556418| zbl=0426.60064 |doi-access=free }}</ref> have been proved by Diaconis and Freedman and by Kerns and Szekely. Two notions of partial exchangeability of arrays, known as ''separate'' and ''joint exchangeability'' lead to extensions of de Finetti's theorem for arrays by Aldous and Hoover.<ref>Persi Diaconis and [[Svante Janson]] (2008) [http://www.stat.berkeley.edu/~aldous/Research/persi-svante.pdf "Graph Limits and Exchangeable Random Graphs"],''Rendiconti di Matematica'', Ser. VII 28(1), 33–61.</ref> The computable de Finetti theorem shows that if an exchangeable sequence of real random variables is given by a computer program, then a program which samples from the mixing measure can be automatically recovered.<ref> Cameron Freer and Daniel Roy (2009) [https://doi.org/10.1007%2F978-3-642-03073-4_23 "Computable exchangeable sequences have computable de Finetti measures"], ''Proceedings of the 5th Conference on Computability in Europe: Mathematical Theory and Computational Practice'', Lecture Notes in Computer Science, Vol. 5635, pp. 218–231.</ref> In the setting of [[free probability]], there is a noncommutative extension of de Finetti's theorem which characterizes noncommutative sequences invariant under quantum permutations.<ref> {{cite journal |first1=Claus |last1=Koestler |first2=Roland |last2=Speicher |year=2009 |title=A noncommutative de Finetti theorem: Invariance under quantum permutations is equivalent to freeness with amalgamation |journal=Commun. Math. Phys. |volume=291 |issue= 2|pages=473–490 |doi= 10.1007/s00220-009-0802-8|bibcode=2009CMaPh.291..473K |arxiv=0807.0677 |s2cid=115155584 }} </ref> Extensions of de Finetti's theorem to quantum states have been found to be useful in [[quantum information]],<ref>{{Cite journal|last1=Caves|first1=Carlton M.|last2=Fuchs|first2=Christopher A.|last3=Schack|first3=Ruediger|date=2002-08-20|title=Unknown quantum states: The quantum de Finetti representation|journal=Journal of Mathematical Physics|volume=43|issue=9|pages=4537–4559|arxiv=quant-ph/0104088|doi=10.1063/1.1494475|issn=0022-2488|bibcode=2002JMP....43.4537C|s2cid=17416262}}</ref><ref>{{cite web|url=http://math.ucr.edu/home/baez/week251.html|title=This Week's Finds in Mathematical Physics (Week 251)|year=2007|author=J. Baez|access-date=29 April 2012|author-link=John C. Baez}}</ref><ref>{{Cite book|last1=Brandao|first1=Fernando G.S.L.|last2=Harrow|first2=Aram W.|title=Proceedings of the forty-fifth annual ACM symposium on Theory of Computing |chapter=Quantum de finetti theorems under local measurements with applications |date=2013-01-01|series=STOC '13|location=New York, NY, USA|publisher=ACM|pages=861–870|arxiv=1210.6367|doi=10.1145/2488608.2488718|isbn=9781450320290|s2cid=1772280}}</ref> in topics like [[quantum key distribution]]<ref>{{cite arXiv|last=Renner|first=Renato|date=2005-12-30|title=Security of Quantum Key Distribution|arxiv=quant-ph/0512258}}</ref> and [[quantum entanglement|entanglement]] detection.<ref>{{Cite journal|last1=Doherty|first1=Andrew C.|last2=Parrilo|first2=Pablo A.|last3=Spedalieri|first3=Federico M.|date=2005-01-01|title=Detecting multipartite entanglement|journal=Physical Review A|volume=71|issue=3|pages=032333|arxiv=quant-ph/0407143|doi=10.1103/PhysRevA.71.032333|bibcode=2005PhRvA..71c2333D|s2cid=44241800}}</ref> A multivariate extension of de Finetti’s theorem can be used to derive [[Bose–Einstein statistics]] from the statistics of classical (i.e. independent) particles.<ref>{{cite journal |first1=A. |last1=Bach |first2=H. |last2=Blank |first3=H. |last3=Francke |title=Bose-Einstein statistics derived from the statistics of classical particles |journal=Lettere al Nuovo Cimento |volume=43 |pages=195–198 |year=1985 |issue=4 |doi=10.1007/BF02746978 |s2cid=121413539 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)