Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Decision tree learning
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Variance reduction=== Introduced in CART,<ref name="bfos"/> variance reduction is often employed in cases where the target variable is continuous (regression tree), meaning that use of many other metrics would first require discretization before being applied. The variance reduction of a node {{mvar|N}} is defined as the total reduction of the variance of the target variable {{mvar|Y}} due to the split at this node: :<math> I_V(N) = \frac{1}{|S|^2}\sum_{i\in S} \sum_{j\in S} \frac{1}{2}(y_i - y_j)^2 - \left(\frac{|S_t|^2}{|S|^2}\frac{1}{|S_t|^2}\sum_{i\in S_t} \sum_{j\in S_t} \frac{1}{2}(y_i - y_j)^2 + \frac{|S_f|^2}{|S|^2}\frac{1}{|S_f|^2}\sum_{i\in S_f} \sum_{j\in S_f} \frac{1}{2}(y_i - y_j)^2\right) </math> where <math>S</math>, <math>S_t</math>, and <math>S_f</math> are the set of presplit sample indices, set of sample indices for which the split test is true, and set of sample indices for which the split test is false, respectively. Each of the above summands are indeed [[variance]] estimates, though, written in a form without directly referring to the mean. By replacing <math>(y_i - y_j)^2</math> in the formula above with the dissimilarity <math>d_{ij}</math> between two objects <math>i</math> and <math>j</math>, the variance reduction criterion applies to any kind of object for which pairwise dissimilarities can be computed.<ref name=":1" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)