Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Definite matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Examples == {{unordered list | The [[identity matrix]] <math>I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}</math> is positive-definite (and as such also positive semi-definite). It is a real symmetric matrix, and, for any non-zero column vector '''z''' with real entries ''a'' and ''b'', one has <math display="block"> \mathbf{z}^\mathsf{T} I\mathbf{z} = \begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = a^2 + b^2.</math> Seen as a complex matrix, for any non-zero column vector ''z'' with complex entries ''a'' and ''b'' one has <math display="block">\mathbf{z}^*I\mathbf{z} = \begin{bmatrix} \overline{a} & \overline{b} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b\end{bmatrix} = \overline{a}a + \overline{b}b = |a|^2 + |b|^2.</math> Either way, the result is positive since <math>\mathbf z</math> is not the zero vector (that is, at least one of <math>a</math> and <math>b</math> is not zero). | The real symmetric matrix <math display="block">M = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}</math> is positive-definite since for any non-zero column vector '''z''' with entries ''a'', ''b'' and ''c'', we have <math display="block">\begin{align} \mathbf{z}^\mathsf{T} M \mathbf{z} = \left( \mathbf{z}^\mathsf{T} M \right) \mathbf{z} &= \begin{bmatrix} (2a - b) & (-a + 2b - c) & (-b + 2c) \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} \\ &= (2a - b)a + (-a + 2b - c)b + (-b + 2c)c \\ &= 2a^2 - ba - ab + 2b^2 - cb - bc + 2c^2 \\ &= 2a^2 - 2ab + 2b^2 - 2bc + 2c^2 \\ &= a^2 + a^2 - 2ab + b^2 + b^2- 2bc + c^2 + c^2 \\ &= a^2 + (a - b)^2 + (b - c)^2 + c^2 \end{align}</math> This result is a sum of squares, and therefore non-negative; and is zero only if <math>a = b = c = 0,</math> that is, when <math>\mathbf{z}</math> is the zero vector. | For any real [[invertible matrix]] <math>A,</math> the product <math>A^\mathsf{T} A</math> is a positive definite matrix (if the means of the columns of A are 0, then this is also called the [[covariance matrix]]). A simple proof is that for any non-zero vector <math>\mathbf{z},</math> the condition <math>\mathbf{z}^\mathsf{T} A^\mathsf{T} A\mathbf{z} = (A\mathbf{z})^\mathsf{T} (A\mathbf{z}) = \|A\mathbf{z}\|^2 > 0,</math> since the invertibility of matrix <math>A</math> means that <math>A\mathbf{z} \neq 0.</math> | The example <math>M</math> above shows that a matrix in which some elements are negative may still be positive definite. Conversely, a matrix whose entries are all positive is not necessarily positive definite, as for example <math display="block">N = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix},</math> for which <math>\begin{bmatrix} -1 & 1 \end{bmatrix}N\begin{bmatrix} -1 & 1 \end{bmatrix}^\mathsf{T} = -2 < 0.</math> }}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)