Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dimethyl ether
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Fuel=== [[File:Chemrec 5 - small.JPG|thumb|left|Installation of BioDME synthesis towers at Chemrec's pilot facility]] A potentially major use of dimethyl ether is as substitute for [[propane]] in [[Liquefied petroleum gas|LPG]] used as fuel in household and industry.<ref>{{cite web|url=http://aboutdme.org/aboutdme/files/ccLibraryFiles/Filename/000000001519/IDA_Fact_Sheet_1_LPG_DME_Blends.pdf|title=IDA Fact Sheet DME/LPG Blends 2010 v1|website=aboutdme.org|access-date=1 April 2018|archive-date=24 July 2011|archive-url=https://web.archive.org/web/20110724214522/http://aboutdme.org/aboutdme/files/ccLibraryFiles/Filename/000000001519/IDA_Fact_Sheet_1_LPG_DME_Blends.pdf|url-status=usurped}}</ref> Dimethyl ether can also be used as a blendstock in propane [[autogas]].<ref>{{Cite journal|url= https://doi.org/10.1016/j.jngse.2012.05.012|title= The Status of DME developments in China and beyond, 2012|journal= Journal of Natural Gas Science and Engineering|date= November 2012|volume= 9|pages= 94β107|doi= 10.1016/j.jngse.2012.05.012|last1= Fleisch|first1= T. H.|last2= Basu|first2= A.|last3= Sills|first3= R. A.|access-date= 2020-11-21|archive-date= 2022-05-04|archive-url= https://web.archive.org/web/20220504141337/https://www.sciencedirect.com/science/article/pii/S1875510012000650?via%3Dihub|url-status= live|url-access= subscription}}</ref> It is also a promising fuel in [[diesel engines]],<ref>[http://www.nykomb.se/index.php?s=Chemicals nycomb.se, Nycomb Chemicals company] {{webarchive|url=https://web.archive.org/web/20080603115705/http://www.nykomb.se/index.php?s=Chemicals |date=2008-06-03 }}</ref> and [[gas turbines]]. For diesel engines, an advantage is the high [[cetane number]] of 55, compared to that of [[diesel fuel]] from petroleum, which is 40β53.<ref>{{cite web |url=http://www.topsoe.com/site.nsf/all/BBNN-5PNJ3F?OpenDocument |title=Haldor Topsoe - Products & Services - Technologies - DME - Applications - DME as Diesel Fuel |access-date=2011-11-04 |url-status=dead |archive-url=https://web.archive.org/web/20071008100421/http://www.topsoe.com/site.nsf/all/BBNN-5PNJ3F?OpenDocument |archive-date=2007-10-08 }} topsoe.com</ref> Only moderate modifications are needed to convert a diesel engine to burn dimethyl ether. The simplicity of this short carbon chain compound leads to very low emissions of particulate matter during combustion. For these reasons as well as being sulfur-free, dimethyl ether meets even the most stringent emission regulations in Europe ([[European emission standards|EURO5]]), U.S. (U.S. 2010), and Japan (2009 Japan).<ref>{{cite web |url=http://www.japantransport.com/conferences/2006/03/dme_detailed_information.pdf |title=Archived copy |access-date=2011-11-04 |url-status=dead |archive-url=https://web.archive.org/web/20090107022359/http://www.japantransport.com/conferences/2006/03/dme_detailed_information.pdf |archive-date=2009-01-07 }}, ''Conference on the Development and Promotion of Environmentally Friendly Heavy Duty Vehicles such as DME Trucks'', Washington DC, March 17, '''2006'''</ref> At the [[Shell Eco-marathon|European Shell Eco Marathon]], an unofficial World Championship for mileage, vehicle running on 100 % dimethyl ether drove 589 km/L (169.8 cm<sup>3</sup>/100 km), fuel equivalent to gasoline with a 50 cm<sup>3</sup> displacement 2-stroke engine. As well as winning they beat the old standing record of 306 km/liter (326.8 cm<sup>3</sup>/100 km), set by the same team in 2007.<ref>{{cite web|url=http://www.ecocar.mek.dtu.dk/Achievements.aspx|title=The Danish Ecocar Team - List of achievements|website=dtu.dk|access-date=1 April 2018|archive-url=https://web.archive.org/web/20091017150928/http://www.ecocar.mek.dtu.dk/Achievements.aspx|archive-date=17 October 2009|url-status=dead}}</ref> To study the dimethyl ether for the combustion process a chemical kinetic mechanism<ref>{{Cite journal|url = https://doi.org/10.1016/j.combustflame.2020.04.016|doi = 10.1016/j.combustflame.2020.04.016|title = A comprehensive kinetic model for dimethyl ether and dimethoxymethane oxidation and NO interaction utilizing experimental laminar flame speed measurements at elevated pressure and temperature|year = 2020|last1 = Shrestha|first1 = Krishna P.|last2 = Eckart|first2 = Sven|last3 = Elbaz|first3 = Ayman M.|last4 = Giri|first4 = Binod R.|last5 = Fritsche|first5 = Chris|last6 = Seidel|first6 = Lars|last7 = Roberts|first7 = William L.|last8 = Krause|first8 = Hartmut|last9 = Mauss|first9 = Fabian|journal = Combustion and Flame|volume = 218|pages = 57β74|hdl = 10754/662921|s2cid = 219772095|hdl-access = free|access-date = 2020-05-18|archive-date = 2022-05-04|archive-url = https://web.archive.org/web/20220504141322/https://www.sciencedirect.com/science/article/pii/S0010218020301607?via%3Dihub|url-status = live}}</ref> is required which can be used for Computational fluid dynamics calculation.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)