Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirac delta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Properties== ===Scaling and symmetry=== The delta function satisfies the following scaling property for a non-zero scalar {{mvar|α}}:{{sfn|Dirac|1930|loc=§22 The ''δ'' function}}{{sfn|Strichartz|1994|loc=Problem 2.6.2}} <math display="block">\int_{-\infty}^\infty \delta(\alpha x)\,dx =\int_{-\infty}^\infty \delta(u)\,\frac{du}{|\alpha|} =\frac{1}{|\alpha|}</math> and so {{NumBlk2|:|<math>\delta(\alpha x) = \frac{\delta(x)}{|\alpha|}.</math>|4}} Scaling property proof: <math display="block">\int\limits_{-\infty}^{\infty} dx\ g(x) \delta (ax) = \frac{1}{a}\int\limits_{-\infty}^{\infty} dx'\ g\left(\frac{x'}{a}\right) \delta (x') = \frac{1}{ a }g(0). </math> where a change of variable {{math|1=''x′'' = ''ax''}} is used. If {{mvar|a}} is negative, i.e., {{math|1=''a'' = −{{!}}''a''{{!}}}}, then <math display="block">\int\limits_{-\infty}^{\infty} dx\ g(x) \delta (ax) = \frac{1}{-\left \vert a \right \vert}\int\limits_{\infty}^{-\infty} dx'\ g\left(\frac{x'}{a}\right) \delta (x') = \frac{1}{\left \vert a \right \vert}\int\limits_{-\infty}^{\infty} dx'\ g\left(\frac{x'}{a}\right) \delta (x') = \frac{1}{\left \vert a \right \vert}g(0). </math> Thus, {{nowrap|<math>\delta (ax) = \frac{1}{\left \vert a \right \vert} \delta(x)</math>.}} In particular, the delta function is an [[even function|even]] distribution (symmetry), in the sense that <math display="block">\delta(-x) = \delta(x)</math> which is [[homogeneous function|homogeneous]] of degree {{math|−1}}. ===Algebraic properties=== The [[distribution (mathematics)|distributional product]] of {{mvar|δ}} with {{mvar|x}} is equal to zero: <math display="block">x\,\delta(x) = 0.</math> More generally, <math>(x-a)^n\delta(x-a) =0</math> for all positive integers <math>n</math>. Conversely, if {{math|1=''xf''(''x'') = ''xg''(''x'')}}, where {{mvar|f}} and {{mvar|g}} are distributions, then <math display="block">f(x) = g(x) +c \delta(x)</math> for some constant {{mvar|c}}.{{sfn|Vladimirov|1971|loc=Chapter 2, Example 3(d)}} ===Translation=== The integral of any function multiplied by the time-delayed Dirac delta <math> \delta_T(t) {=} \delta(t{-}T)</math> is <math display="block">\int_{-\infty}^\infty f(t) \,\delta(t-T)\,dt = f(T).</math> This is sometimes referred to as the ''sifting property''<ref>{{MathWorld|urlname=SiftingProperty|title=Sifting Property}}</ref> or the ''sampling property''.<ref>{{Cite book|last=Karris|first=Steven T.|url={{google books |plainurl=y |id=f0RdM1zv_dkC}}| title=Signals and Systems with MATLAB Applications|date=2003|publisher=Orchard Publications|isbn=978-0-9709511-6-8|language=en| page=[{{google books |plainurl=y |id=f0RdM1zv_dkC&pg=SA1-PA15 }} 15]}}</ref> The delta function is said to "sift out" the value of ''f(t)'' at ''t'' = ''T''.<ref>{{Cite book|last=Roden|first=Martin S.|url={{google books |plainurl=y |id=YEKeBQAAQBAJ}}|title=Introduction to Communication Theory|date=2014-05-17|publisher=Elsevier|isbn=978-1-4831-4556-3|language=en|page=[{{google books |plainurl=y |id=YEKeBQAAQBAJ|page=40}}]}}</ref> It follows that the effect of [[Convolution|convolving]] a function {{math|''f''(''t'')}} with the time-delayed Dirac delta is to time-delay {{math|''f''(''t'')}} by the same amount:<ref>{{Cite book|last1=Rottwitt|first1=Karsten|url={{google books |plainurl=y |id=G1jSBQAAQBAJ}}|title=Nonlinear Optics: Principles and Applications|last2=Tidemand-Lichtenberg|first2=Peter| date=2014-12-11| publisher=CRC Press|isbn=978-1-4665-6583-8|language=en|page=[{{google books |plainurl=y |id=G1jSBQAAQBAJ|page=276}}] 276}}</ref> <math display="block">\begin{align} (f * \delta_T)(t) \ &\stackrel{\mathrm{def}}{=}\ \int_{-\infty}^\infty f(\tau)\, \delta(t-T-\tau) \, d\tau \\ &= \int_{-\infty}^\infty f(\tau) \,\delta(\tau-(t-T)) \,d\tau \qquad \text{since}~ \delta(-x) = \delta(x) ~~ \text{by (4)}\\ &= f(t-T). \end{align}</math> The sifting property holds under the precise condition that {{mvar|f}} be a [[Distribution (mathematics)#Tempered distributions and Fourier transform|tempered distribution]] (see the discussion of the Fourier transform [[#Fourier transform|below]]). As a special case, for instance, we have the identity (understood in the distribution sense) <math display="block">\int_{-\infty}^\infty \delta (\xi-x) \delta(x-\eta) \,dx = \delta(\eta-\xi).</math> ===Composition with a function=== More generally, the delta distribution may be [[distribution (mathematics)#Composition with a smooth function|composed]] with a smooth function {{math|''g''(''x'')}} in such a way that the familiar change of variables formula holds (where <math>u=g(x)</math>), that <math display="block">\int_{\R} \delta\bigl(g(x)\bigr) f\bigl(g(x)\bigr) \left|g'(x)\right| dx = \int_{g(\R)} \delta(u)\,f(u)\,du</math> provided that {{mvar|g}} is a [[continuously differentiable]] function with {{math|''g′''}} nowhere zero.{{sfn|Gelfand|Shilov|1966–1968|loc=Vol. 1, §II.2.5}} That is, there is a unique way to assign meaning to the distribution <math>\delta\circ g</math> so that this identity holds for all compactly supported test functions {{mvar|f}}. Therefore, the domain must be broken up to exclude the {{math|1=''g′'' = 0}} point. This distribution satisfies {{math|1=''δ''(''g''(''x'')) = 0}} if {{mvar|g}} is nowhere zero, and otherwise if {{mvar|g}} has a real [[root of a function|root]] at {{math|''x''<sub>0</sub>}}, then <math display="block">\delta(g(x)) = \frac{\delta(x-x_0)}{|g'(x_0)|}.</math> It is natural therefore to {{em|define}} the composition {{math|''δ''(''g''(''x''))}} for continuously differentiable functions {{mvar|g}} by <math display="block">\delta(g(x)) = \sum_i \frac{\delta(x-x_i)}{|g'(x_i)|}</math> where the sum extends over all roots of {{mvar|''g''(''x'')}}, which are assumed to be [[simple root|simple]]. Thus, for example <math display="block">\delta\left(x^2-\alpha^2\right) = \frac{1}{2|\alpha|} \Big[\delta\left(x+\alpha\right)+\delta\left(x-\alpha\right)\Big].</math> In the integral form, the generalized scaling property may be written as <math display="block"> \int_{-\infty}^\infty f(x) \, \delta(g(x)) \, dx = \sum_{i}\frac{f(x_i)}{|g'(x_i)|}. </math> ===Indefinite integral=== For a constant <math>a \isin \mathbb{R}</math> and a "well-behaved" arbitrary real-valued function {{math|''y''(''x'')}}, <math display="block">\displaystyle{\int}y(x)\delta(x-a)dx = y(a)H(x-a) + c,</math> where {{math|''H''(''x'')}} is the [[Heaviside step function]] and {{math|''c''}} is an integration constant. ===Properties in ''n'' dimensions=== The delta distribution in an {{mvar|n}}-dimensional space satisfies the following scaling property instead, <math display="block">\delta(\alpha\boldsymbol{x}) = |\alpha|^{-n}\delta(\boldsymbol{x}) ~,</math> so that {{mvar|δ}} is a [[homogeneous function|homogeneous]] distribution of degree {{math|−''n''}}. Under any [[reflection (mathematics)|reflection]] or [[rotation (mathematics)|rotation]] {{mvar|ρ}}, the delta function is invariant, <math display="block">\delta(\rho \boldsymbol{x}) = \delta(\boldsymbol{x})~.</math> As in the one-variable case, it is possible to define the composition of {{mvar|δ}} with a [[Lipschitz function|bi-Lipschitz function]]<ref>Further refinement is possible, namely to [[submersion (mathematics)|submersions]], although these require a more involved change of variables formula.</ref> {{math|''g'': '''R'''<sup>''n''</sup> → '''R'''<sup>''n''</sup>}} uniquely so that the following holds <math display="block">\int_{\R^n} \delta(g(\boldsymbol{x}))\, f(g(\boldsymbol{x}))\left|\det g'(\boldsymbol{x})\right| d\boldsymbol{x} = \int_{g(\R^n)} \delta(\boldsymbol{u}) f(\boldsymbol{u})\,d\boldsymbol{u}</math> for all compactly supported functions {{mvar|f}}. Using the [[coarea formula]] from [[geometric measure theory]], one can also define the composition of the delta function with a [[submersion (mathematics)|submersion]] from one Euclidean space to another one of different dimension; the result is a type of [[current (mathematics)|current]]. In the special case of a continuously differentiable function {{math|''g'' : '''R'''<sup>''n''</sup> → '''R'''}} such that the [[gradient]] of {{mvar|g}} is nowhere zero, the following identity holds{{sfn|Hörmander|1983|loc=§6.1}} <math display="block">\int_{\R^n} f(\boldsymbol{x}) \, \delta(g(\boldsymbol{x})) \,d\boldsymbol{x} = \int_{g^{-1}(0)}\frac{f(\boldsymbol{x})}{|\boldsymbol{\nabla}g|}\,d\sigma(\boldsymbol{x}) </math> where the integral on the right is over {{math|''g''<sup>−1</sup>(0)}}, the {{math|(''n'' − 1)}}-dimensional surface defined by {{math|1=''g''('''x''') = 0}} with respect to the [[Minkowski content]] measure. This is known as a ''simple layer'' integral. More generally, if {{mvar|S}} is a smooth hypersurface of {{math|'''R'''<sup>''n''</sup>}}, then we can associate to {{mvar|S}} the distribution that integrates any compactly supported smooth function {{mvar|g}} over {{mvar|S}}: <math display="block">\delta_S[g] = \int_S g(\boldsymbol{s})\,d\sigma(\boldsymbol{s})</math> where {{mvar|σ}} is the hypersurface measure associated to {{mvar|S}}. This generalization is associated with the [[potential theory]] of [[simple layer potential]]s on {{mvar|S}}. If {{mvar|D}} is a [[domain (mathematical analysis)|domain]] in {{math|'''R'''<sup>''n''</sup>}} with smooth boundary {{mvar|S}}, then {{math|''δ''<sub>''S''</sub>}} is equal to the [[normal derivative]] of the [[indicator function]] of {{mvar|D}} in the distribution sense, <math display="block">-\int_{\R^n}g(\boldsymbol{x})\,\frac{\partial 1_D(\boldsymbol{x})}{\partial n}\,d\boldsymbol{x}=\int_S\,g(\boldsymbol{s})\, d\sigma(\boldsymbol{s}),</math> where {{mvar|n}} is the outward normal.{{sfn|Lange|2012|loc=pp.29–30}}{{sfn|Gelfand|Shilov|1966–1968|p=212}} For a proof, see e.g. the article on the [[surface delta function]]. In three dimensions, the delta function is represented in spherical coordinates by: <math display="block">\delta(\boldsymbol{r}-\boldsymbol{r}_0) = \begin{cases} \displaystyle\frac{1}{r^2\sin\theta}\delta(r-r_0) \delta(\theta-\theta_0)\delta(\phi-\phi_0)& x_0,y_0,z_0 \ne 0 \\ \displaystyle\frac{1}{2\pi r^2\sin\theta}\delta(r-r_0) \delta(\theta-\theta_0)& x_0=y_0=0,\ z_0 \ne 0 \\ \displaystyle\frac{1}{4\pi r^2}\delta(r-r_0) & x_0=y_0=z_0 = 0 \end{cases}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)