Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirac spinor
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Orthogonality== The Dirac spinors provide a complete and orthogonal set of solutions to the [[Dirac equation]].<ref>{{cite book |first=James D. |last=Bjorken |first2=Sidney D. |last2=Drell |year=1964 |title=Relativistic Quantum Mechanics |publisher=McGraw-Hill }} ''See Chapter 3.''</ref><ref name="iz">{{cite book |first=Claude |last=Itzykson |first2=Jean-Bernard |last2=Zuber |year=1980 |title=Quantum Field Theory |publisher=McGraw-Hill |isbn=0-07-032071-3 }} ''See Chapter 2.''</ref> This is most easily demonstrated by writing the spinors in the rest frame, where this becomes obvious, and then boosting to an arbitrary Lorentz coordinate frame. In the rest frame, where the three-momentum vanishes: <math>\vec p = \vec 0,</math> one may define four spinors <math display="block">u^{(1)}\left(\vec{0}\right) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \qquad u^{(2)}\left(\vec{0}\right) = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \qquad v^{(1)}\left(\vec{0}\right) = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \qquad v^{(2)}\left(\vec{0}\right) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} </math> Introducing the [[Feynman slash notation#With four-momentum|Feynman slash notation]] <math display="block">{p\!\!\!/} = \gamma^\mu p_\mu</math> the boosted spinors can be written as <math display="block">u^{(s)}\left(\vec{p}\right) = \frac{{p\!\!\!/} + m}{\sqrt{2m(E+m)}} u^{(s)}\left(\vec{0}\right) = \textstyle \sqrt{\frac{E+m}{2m}} \begin{bmatrix} \phi^{(s)}\\ \frac {\vec\sigma \cdot \vec p} {E+m} \phi^{(s)} \end{bmatrix} </math> and <math display="block"> v^{(s)}\left(\vec{p}\right) = \frac{-{p\!\!\!/} + m}{\sqrt{2m(E+m)}} v^{(s)}\left(\vec{0}\right) = \textstyle \sqrt{\frac{E+m}{2m}} \begin{bmatrix} \frac {\vec\sigma \cdot \vec p} {E+m} \chi^{(s)} \\ \chi^{(s)} \end{bmatrix} </math> The conjugate spinors are defined as <math>\overline \psi = \psi^\dagger \gamma^0</math> which may be shown to solve the conjugate Dirac equation <math display="block">\overline \psi (i{\partial\!\!\!/} + m) = 0</math> with the derivative understood to be acting towards the left. The conjugate spinors are then <math display="block"> \overline u^{(s)}\left(\vec{p}\right) = \overline u^{(s)}\left(\vec{0}\right) \frac{{p\!\!\!/} + m}{\sqrt{2m(E+m)}} </math> and <math display="block"> \overline v^{(s)}\left(\vec{p}\right) = \overline v^{(s)}\left(\vec{0}\right) \frac{-{p\!\!\!/} + m}{\sqrt{2m(E+m)}} </math> The normalization chosen here is such that the scalar invariant <math>\overline\psi \psi</math> really is invariant in all Lorentz frames. Specifically, this means <math display="block"> \begin{align} \overline u^{(a)} (p) u^{(b)} (p) &= \delta_{ab} & \overline u^{(a)} (p) v^{(b)} (p) &= 0 \\ \overline v^{(a)} (p) v^{(b)} (p) &= -\delta_{ab} & \overline v^{(a)} (p) u^{(b)} (p) &= 0 \end{align} </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)