Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Direct sum of modules
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Universal property == In the language of [[category theory]], the direct sum is a [[coproduct]] and hence a [[limit (category theory)|colimit]] in the category of left ''R''-modules, which means that it is characterized by the following [[universal property]]. For every ''i'' in ''I'', consider the ''natural embedding'' :<math>j_i : M_i \rightarrow \bigoplus_{i \in I} M_i</math> which sends the elements of ''M''<sub>''i''</sub> to those functions which are zero for all arguments but ''i''. Now let ''M'' be an arbitrary ''R''-module and ''f''<sub>''i''</sub> : ''M''<sub>''i''</sub> β ''M'' be arbitrary ''R''-linear maps for every ''i'', then there exists precisely one ''R''-linear map :<math>f : \bigoplus_{i \in I} M_i \rightarrow M</math> such that ''f'' o ''j<sub>i</sub>'' = ''f''<sub>''i''</sub> for all ''i''.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)