Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirichlet character
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Powers of 2 === <math>(\mathbb{Z}/2\mathbb{Z})^\times</math> is the trivial group with one element. <math>(\mathbb{Z}/4\mathbb{Z})^\times</math> is cyclic of order 2. For 8, 16, and higher powers of 2, there is no primitive root; the powers of 5 are the units <math>\equiv 1\pmod{4}</math> and their negatives are the units <math>\equiv 3\pmod{4}.</math><ref>Landau pp. 107-108</ref> For example :<math>5^1\equiv 5,\;5^2\equiv5^0\equiv 1\pmod{8}</math> :<math>5^1\equiv 5,\;5^2\equiv 9,\;5^3\equiv 13,\;5^4\equiv5^0\equiv 1\pmod{16}</math> :<math>5^1\equiv 5,\;5^2\equiv 25,\;5^3\equiv 29,\;5^4\equiv 17,\;5^5\equiv 21,\;5^6\equiv 9,\;5^7\equiv 13,\;5^8\equiv5^0\equiv 1\pmod{32}.</math> Let <math>q=2^k, \;\;k\ge3</math>; then <math>(\mathbb{Z}/q\mathbb{Z})^\times</math> is the direct product of a cyclic group of order 2 (generated by β1) and a cyclic group of order <math>\frac{\phi(q)}{2}</math> (generated by 5). For odd numbers <math>a</math> define the functions <math>\nu_0</math> and <math>\nu_q</math> by :<math>a\equiv(-1)^{\nu_0(a)}5^{\nu_q(a)}\pmod{q},</math> :<math>0\le\nu_0<2,\;\;0\le\nu_q<\frac{\phi(q)}{2}.</math> For odd <math>a</math> and <math>b, \;\;a\equiv b\pmod{q}</math> if and only if <math>\nu_0(a)=\nu_0(b)</math> and <math>\nu_q(a)=\nu_q(b).</math> For odd <math>a</math> the value of <math> \chi(a)</math> is determined by the values of <math> \chi(-1)</math> and <math>\chi(5).</math> Let <math>\omega_q = \zeta_{\frac{\phi(q)}{2}}</math> be a primitive <math>\frac{\phi(q)}{2}</math>-th root of unity. The possible values of <math> \chi((-1)^{\nu_0(a)}5^{\nu_q(a)})</math> are <math> \pm\omega_q, \pm\omega_q^2, ... \pm\omega_q^{\frac{\phi(q)}{2}}=\pm1.</math> These distinct values give rise to <math>\phi(q)</math> Dirichlet characters mod <math>q.</math> For odd <math>r </math> define <math>\chi_{q,r}(a)</math> by :<math> \chi_{q,r}(a)= \begin{cases} 0 &\text{if } a\text{ is even}\\ (-1)^{\nu_0(r)\nu_0(a)}\omega_q^{\nu_q(r)\nu_q(a)}&\text{if } a \text{ is odd}. \end{cases}</math> Then for odd <math>r</math> and <math>s</math> and all <math>a</math> and <math>b</math> :<math>\chi_{q,r}(a)\chi_{q,r}(b)=\chi_{q,r}(ab)</math> showing that <math>\chi_{q,r}</math> is a character and :<math>\chi_{q,r}(a)\chi_{q,s}(a)=\chi_{q,rs}(a)</math> showing that <math>\widehat{(\mathbb{Z}/2^{k}\mathbb{Z})^\times}\cong (\mathbb{Z}/2^{k}\mathbb{Z})^\times.</math> ==== Examples ''m'' = 2, 4, 8, 16 ==== The only character mod 2 is the principal character <math>\chi_{2,1}</math>. β1 is a primitive root mod 4 (<math>\phi(4)=2</math>) :<math> \begin{array}{|||} a & 1 & 3 \\ \hline \nu_0(a) & 0 & 1 \\ \end{array} </math> The nonzero values of the characters mod 4 are :<math> \begin{array}{|c|c|c|c|c|c|c|} & 1 & 3 \\ \hline \chi_{4,1} & 1 & 1 \\ \chi_{4,3} & 1 & -1 \\ \end{array} </math> β1 is and 5 generate the units mod 8 (<math>\phi(8)=4</math>) :<math> \begin{array}{|||} a & 1 & 3 & 5 & 7 \\ \hline \nu_0(a) & 0 & 1 & 0 & 1 \\ \nu_8(a) & 0 & 1 & 1 & 0 \\ \end{array} </math>. The nonzero values of the characters mod 8 are :<math> \begin{array}{|c|c|c|c|c|c|c|} & 1 & 3 & 5 & 7 \\ \hline \chi_{8,1} & 1 & 1 & 1 & 1 \\ \chi_{8,3} & 1 & 1 & -1 & -1 \\ \chi_{8,5} & 1 & -1 & -1 & 1 \\ \chi_{8,7} & 1 & -1 & 1 & -1 \\ \end{array} </math> β1 and 5 generate the units mod 16 (<math>\phi(16)=8</math>) :<math> \begin{array}{|||} a & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\ \hline \nu_0(a) & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ \nu_{16}(a) & 0 & 3 & 1 & 2 & 2 & 1 & 3 & 0 \\ \end{array} </math>. The nonzero values of the characters mod 16 are :<math> \begin{array}{|||} & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\ \hline \chi_{16,1} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \chi_{16,3} & 1 & -i & -i & 1 & -1 & i & i & -1 \\ \chi_{16,5} & 1 & -i & i & -1 & -1 & i & -i & 1 \\ \chi_{16,7} & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\ \chi_{16,9} & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ \chi_{16,11} & 1 & i & i & 1 & -1 & -i & -i & -1 \\ \chi_{16,13} & 1 & i & -i & -1 & -1 & -i & i & 1 \\ \chi_{16,15} & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ \end{array} </math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)