Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirichlet convolution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Other formulas=== {| class="wikitable" border="1" ! Arithmetic function !! Dirichlet inverse:<ref>See Apostol Chapter 2.</ref> |- | Constant function with value 1 ||[[Möbius function]] ''μ'' |- | <math>n^{\alpha}</math> || <math>\mu(n) \,n^\alpha</math> |- | [[Liouville's function]] ''λ'' || Absolute value of Möbius function {{abs|''μ''}} |- | [[Euler's totient function]] <math>\varphi</math> ||<math>\sum_{d|n} d\, \mu(d)</math> |- | The [[sum of divisors|generalized sum-of-divisors function]] <math>\sigma_{\alpha}</math> || <math>\sum_{d|n} d^{\alpha} \mu(d) \mu\left(\frac{n}{d}\right)</math> |} An exact, non-recursive formula for the Dirichlet inverse of any [[arithmetic function]] ''f'' is given in [[Divisor sum identities#The Dirichlet inverse of an arithmetic function|Divisor sum identities]]. A more [[partition theory|partition theoretic]] expression for the Dirichlet inverse of ''f'' is given by :<math>f^{-1}(n) = \sum_{k=1}^{\Omega(n)} \left\{ \sum_{{\lambda_1+2\lambda_2+\cdots+k\lambda_k=n} \atop {\lambda_1, \lambda_2, \ldots, \lambda_k | n}} \frac{(\lambda_1+\lambda_2+\cdots+\lambda_k)!}{1! 2! \cdots k!} (-1)^k f(\lambda_1) f(\lambda_2)^2 \cdots f(\lambda_k)^k\right\}.</math> The following formula provides a compact way of expressing the Dirichlet inverse of an invertible arithmetic function ''f'' : <math>f^{-1}=\sum_{k=0}^{+\infty}\frac{(f(1)\varepsilon-f)^{*k}}{f(1)^{k+1}}</math> where the expression <math>(f(1)\varepsilon-f)^{*k}</math> stands for the arithmetic function <math>f(1)\varepsilon-f</math> convoluted with itself ''k'' times. Notice that, for a fixed positive integer <math>n</math>, if <math>k>\Omega(n)</math> then <math>(f(1)\varepsilon-f)^{*k}(n)=0</math> , this is because <math>f(1)\varepsilon(1) - f(1) = 0</math> and every way of expressing ''n'' as a product of ''k'' positive integers must include a 1, so the series on the right hand side converges for every fixed positive integer ''n.''
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)