Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Discrete-time Fourier transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Table of discrete-time Fourier transforms == Some common transform pairs are shown in the table below. The following notation applies''':''' *<math>\omega=2 \pi f T</math> is a real number representing continuous angular frequency (in radians per sample). (<math>f</math> is in cycles/sec, and <math>T</math> is in sec/sample.) In all cases in the table, the DTFT is 2Ο-periodic (in <math>\omega</math>). *<math>S_{2\pi}(\omega)</math> designates a function defined on <math>-\infty < \omega < \infty </math>. *<math>S_o(\omega)</math> designates a function defined on <math>-\pi < \omega \le \pi</math>, and zero elsewhere. Then: <math display="block">S_{2\pi}(\omega)\ \triangleq \sum_{k=-\infty}^{\infty} S_o(\omega - 2\pi k).</math> * <math>\delta ( \omega )</math> is the [[Dirac delta function]] * <math>\operatorname{sinc} (t)</math> is the normalized [[sinc function]] * <math>\operatorname{rect}\left[{n \over L}\right] \triangleq \begin{cases} 1 & |n|\leq L/2 \\ 0 & |n| > L/2 \end{cases}</math> * <math>\operatorname{tri} (t)</math> is the [[triangle function]] * {{mvar|n}} is an integer representing the discrete-time domain (in samples) * <math>u[n]</math> is the discrete-time [[Heaviside step function#Discrete form|unit step function]] * <math>\delta[n]</math> is the [[Kronecker delta]] <math>\delta_{n,0}</math> {| class="wikitable" |- ! Time domain <br /> ''s''[''n''] ! Frequency domain <br />''S''<sub>2''Ο''</sub>(''Ο'') ! Remarks ! Reference |- | <math>\delta[n]</math> | <math>S_{2\pi}(\omega) = 1</math> | | <ref name=Proakis/>{{rp|p.305}} |- | <math>\delta[n-M]</math> | <math>S_{2\pi}(\omega) = e^{-i\omega M}</math> | integer <math>M</math> | |- |<math>\sum_{m = -\infty}^{\infty} \delta[n - M m] \!</math> |<math>S_{2\pi}(\omega) = \sum_{m = -\infty}^{\infty} e^{-i \omega M m} = \frac{2\pi}{M}\sum_{k = -\infty}^{\infty} \delta \left( \omega - \frac{2\pi k}{M} \right) \,</math><br> <math>S_o(\omega) = \frac{2\pi}{M}\sum_{k = -(M-1)/2}^{(M-1)/2} \delta \left(\omega - \frac{2\pi k}{M} \right) \,</math> odd ''M''<br> <math>S_o(\omega) = \frac{2\pi}{M}\sum_{k = -M/2+1}^{M/2} \delta \left(\omega - \frac{2\pi k}{M} \right) \,</math> even ''M''<br> | integer <math>M > 0 </math> | |- | <math>u[n]</math> | <math>S_{2\pi}(\omega) = \frac{1}{1-e^{-i \omega}} + \pi \sum_{k=-\infty}^{\infty} \delta (\omega - 2\pi k)\!</math><br> <math>S_o(\omega) = \frac{1}{1-e^{-i \omega}} + \pi \cdot \delta (\omega)\!</math> |The <math>1/(1-e^{-i \omega})</math> term must be interpreted as a [[distribution (mathematics)|distribution]] in the sense of a [[Cauchy principal value]] around its [[pole (complex analysis)|poles]] at <math>\omega=2 \pi k</math>. | |- | <math>a^n u[n]</math> | <math>S_{2\pi}(\omega) = \frac{1}{1-a e^{-i \omega}}\!</math> | <math>0 < |a| < 1 </math> | <ref name=Proakis/>{{rp|p.305}} |- | <math>e^{-i a n}</math> | <math>S_o(\omega) = 2\pi\cdot \delta (\omega +a),</math> -Ο < a < Ο<br> <math>S_{2\pi}(\omega) = 2\pi \sum_{k=-\infty}^{\infty} \delta (\omega +a -2\pi k)</math> | real number <math>a</math> | |- | <math>\cos(a\cdot n)</math> | <math>S_o(\omega) = \pi \left[\delta \left(\omega -a\right)+\delta \left(\omega +a\right)\right],</math><br> <math>S_{2\pi}(\omega)\ \triangleq \sum_{k=-\infty}^{\infty} S_o(\omega - 2\pi k)</math> | real number <math>a</math> with <math>-\pi < a < \pi</math> | |- | <math>\sin(a\cdot n)</math> | <math>S_o(\omega) = \frac{\pi}{i} \left[\delta \left(\omega -a\right)-\delta \left(\omega +a\right)\right]</math> | real number <math>a</math> with <math>-\pi < a < \pi</math> | |- | <math>\operatorname{rect} \left[ { n - M \over N } \right] \equiv \operatorname{rect} \left[ { n - M \over N-1 } \right]</math> | <math>S_o(\omega) = { \sin( N \omega / 2 ) \over \sin( \omega / 2 ) } \, e^{ -i \omega M } \!</math> | integer <math>M,</math> and <u>odd</u> integer <math>N</math> | |- | <math>\operatorname{sinc} ( W (n+a))</math> | <math>S_o(\omega) = \frac{1}{W} \operatorname{rect} \left( { \omega \over 2\pi W } \right) e^{ia\omega}</math> | real numbers <math>W,a</math> with <math>0 < W < 1</math> | |- | <math>\operatorname{sinc}^2(W n)\,</math> | <math>S_o(\omega) = \frac{1}{W} \operatorname{tri} \left( { \omega \over 2\pi W } \right)</math> | real number <math>W</math>, <math>0 < W < 0.5</math> | |- | <math> \begin{cases} 0 & n=0 \\ \frac{(-1)^n}{n} & \text{elsewhere} \end{cases}</math> | <math>S_o(\omega) = j \omega</math> |it works as a [[differentiator]] filter |- | <math>\frac{1}{(n + a)} \left\{ \cos [ \pi W (n+a)] - \operatorname{sinc} [ W (n+a)] \right\}</math> | <math>S_o(\omega) = \frac{j \omega}{W} \cdot \operatorname{rect} \left( { \omega \over \pi W } \right) e^{j a \omega}</math> | real numbers <math>W,a</math> with <math>0 < W < 1 </math> | |- | <math>\begin{cases} \frac{\pi}{2} & n = 0 \\ \frac{(-1)^n - 1}{\pi n^2} & \text{ otherwise} \end{cases}</math> | <math>S_o(\omega) = |\omega|</math> | | |- | <math>\begin{cases} 0; & n \text{ even} \\ \frac{2}{\pi n} ; & n \text{ odd} \end{cases}</math> | <math>S_o(\omega) = \begin{cases} j & \omega < 0 \\ 0 & \omega = 0 \\ -j & \omega > 0 \end{cases}</math> |[[Hilbert transform]] | |- | <math>\frac{C (A + B)}{2 \pi} \cdot \operatorname{sinc} \left[ \frac{A - B}{2\pi} n \right] \cdot \operatorname{sinc} \left[ \frac{A + B}{2\pi} n \right]</math> | <math>S_o(\omega) = </math>[[Image:Trapezoid signal.svg|250px]] | real numbers <math>A,B</math> <br /> complex <math>C</math> | |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)