Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Discrete Laplace operator
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Implementation via operator discretization==== For one-, two- and three-dimensional signals, the discrete Laplacian can be given as [[convolution]] with the following kernels: :1D filter: <math>\vec{D}^2_x=\begin{bmatrix}1 & -2 & 1\end{bmatrix}</math>, :2D filter: <math>\mathbf{D}^2_{xy}=\begin{bmatrix}0 & 1 & 0\\1 & -4 & 1\\0 & 1 & 0\end{bmatrix}</math>. <math>\mathbf{D}^2_{xy}</math> corresponds to the ([[Five-point stencil]]) finite-difference formula seen previously. It is stable for very smoothly varying fields, but for equations with rapidly varying solutions a more stable and isotropic form of the Laplacian operator is required,<ref name="Provatas Elder p. ">{{cite book | last1=Provatas | first1=Nikolas | last2=Elder | first2=Ken | title=Phase-Field Methods in Materials Science and Engineering | publisher=Wiley-VCH Verlag GmbH & Co. KGaA | publication-place=Weinheim, Germany | date=2010-10-13 | isbn=978-3-527-63152-0 | url=http://www.physics.mcgill.ca/~provatas/papers/Phase_Field_Methods_text.pdf | doi=10.1002/9783527631520 | page=219}}</ref> such as the [[nine-point stencil]], which includes the diagonals: :2D filter: <math>\mathbf{D}^2_{xy}=\begin{bmatrix}0.25 & 0.5 & 0.25\\0.5 & -3 & 0.5\\0.25 & 0.5 & 0.25\end{bmatrix}</math>, :3D filter: <math>\mathbf{D}^2_{xyz}</math> using [[seven-point stencil]] is given by: ::first plane = <math>\begin{bmatrix}0 & 0 & 0\\0 & 1 & 0\\0 & 0 & 0\end{bmatrix}</math>; second plane = <math>\begin{bmatrix}0 & 1 & 0\\1 & -6 & 1\\0 & 1 & 0\end{bmatrix}</math>; third plane = <math>\begin{bmatrix}0 & 0 & 0\\0 & 1 & 0\\0 & 0 & 0\end{bmatrix}</math>. :and using [[27-point stencil]] by:<ref name="OReilly2006">{{cite journal |last1=O'Reilly |first1=H. |last2=Beck |first2=Jeffrey M. |title=A Family of Large-Stencil Discrete Laplacian Approximations in Three Dimensions |journal=International Journal for Numerical Methods in Engineering |year=2006 |pages=1β16 |url=http://psych.colorado.edu/~oreilly/papers/OReillyBeckIP_lapl.pdf }}</ref> ::first plane = <math>\frac{1}{26}\begin{bmatrix}2 & 3 & 2\\3 & 6 & 3\\2 & 3 & 2\end{bmatrix}</math>; second plane = <math>\frac{1}{26}\begin{bmatrix}3 & 6 & 3\\6 & -88 & 6\\3 & 6 & 3\end{bmatrix}</math>; third plane = <math>\frac{1}{26}\begin{bmatrix}2 & 3 & 2\\3 & 6 & 3\\2 & 3 & 2\end{bmatrix}</math>. :''{{var|n}}D filter'': For the element <math>a_{x_1, x_2, \dots , x_n}</math> of the kernel <math>\mathbf{D}^2_{x_1, x_2, \dots , x_n},</math> ::<math>a_{x_1, x_2, \dots , x_n} = \left\{\begin{array}{ll} -2n & \text{if } s = n, \\ 1 & \text{if } s = n - 1, \\ 0 & \text{otherwise,} \end{array}\right.</math> :where {{math|{{var|x}}{{sub|{{var|i}}}}}} is the position (either {{math|β1}}, {{math|0}} or {{math|1}}) of the element in the kernel in the {{var|i}}-th direction, and {{math|{{var|s}}}} is the number of directions {{math|{{var|i}}}} for which {{math|{{var|x}}{{sub|{{var|i}}}} {{=}} 0}}. Note that the ''n''D version, which is based on the graph generalization of the Laplacian, assumes all neighbors to be at an equal distance, and hence leads to the following 2D filter with diagonals included, rather than the version above: :2D filter: <math>\mathbf{D}^2_{xy}=\begin{bmatrix}1 & 1 & 1\\1 & -8 & 1\\1 & 1 & 1\end{bmatrix}.</math> These kernels are deduced by using discrete differential quotients. It can be shown<ref name=lin90>[http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A472968&dswid=-3163 Lindeberg, T., "Scale-space for discrete signals", PAMI(12), No. 3, March 1990, pp. 234β254.]</ref><ref name=lin94>[http://www.csc.kth.se/~tony/book.html Lindeberg, T., Scale-Space Theory in Computer Vision, Kluwer Academic Publishers, 1994], {{isbn|0-7923-9418-6}}.</ref> that the following discrete approximation of the two-dimensional Laplacian operator as a convex combination of difference operators :<math>\nabla^2_{\gamma}= (1 - \gamma) \nabla^2_{5} + \gamma \nabla ^2_{\times} = (1 - \gamma) \begin{bmatrix}0 & 1 & 0\\1 & -4 & 1\\0 & 1 & 0\end{bmatrix} + \gamma \begin{bmatrix}1/2 & 0 & 1/2\\0 & -2 & 0\\1/2 & 0 & 1/2\end{bmatrix} </math> for Ξ³ β [0, 1] is compatible with discrete scale-space properties, where specifically the value Ξ³ = 1/3 gives the best approximation of rotational symmetry.<ref name=lin90/><ref name=lin94/><ref name="PatraKarttunen2006">{{cite journal|last1=Patra|first1=Michael|last2=Karttunen|first2=Mikko|title=Stencils with isotropic discretization error for differential operators|journal=Numerical Methods for Partial Differential Equations|volume=22|issue=4|year=2006|pages=936β953|issn=0749-159X|doi=10.1002/num.20129|s2cid=123145969 }}</ref> Regarding three-dimensional signals, it is shown<ref name=lin94/> that the Laplacian operator can be approximated by the two-parameter family of difference operators :<math> \nabla^2_{\gamma_1,\gamma_2} = (1 - \gamma_1 - \gamma_2) \, \nabla_7^2 + \gamma_1 \, \nabla_{+^3}^2 + \gamma_2 \, \nabla_{\times^3}^2 ), </math> where :<math> (\nabla_7^2 f)_{0, 0, 0} = f_{-1, 0, 0} + f_{+1, 0, 0} + f_{0, -1, 0} + f_{0, +1, 0} + f_{0, 0, -1} + f_{0, 0, +1} - 6 f_{0, 0, 0}, </math> :<math> (\nabla_{+^3}^2 f)_{0, 0, 0} = \frac{1}{4} (f_{-1, -1, 0} + f_{-1, +1, 0} + f_{+1, -1, 0} + f_{+1, +1, 0} + f_{-1, 0, -1} + f_{-1, 0, +1} + f_{+1, 0, -1} + f_{+1, 0, +1} + f_{0, -1, -1} + f_{0, -1, +1} + f_{0, +1, -1} + f_{0, +1, +1} - 12 f_{0, 0, 0}), </math> :<math> (\nabla_{\times^3}^2 f)_{0, 0, 0} = \frac{1}{4} (f_{-1, -1, -1} + f_{-1, -1, +1} + f_{-1, +1, -1} + f_{-1, +1, +1} + f_{+1, -1, -1} + f_{+1, -1, +1} + f_{+1, +1, -1} + f_{+1, +1, +1} - 8 f_{0, 0, 0}). </math> It can be shown by Taylor series analysis that combinations of values of <math>\gamma_1</math> and <math>\gamma_2</math> for which <math>3\gamma_1 + 6\gamma_2 = 2</math> give the best approximations of rotational symmetry.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)