Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Distributive property
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Propositional logic == {{Transformation rules}} === Rule of replacement === In standard truth-functional propositional logic, {{em|distribution}}<ref>[[Elliott Mendelson]] (1964) ''Introduction to Mathematical Logic'', page 21, D. Van Nostrand Company</ref><ref>[[Alfred Tarski]] (1941) ''Introduction to Logic'', page 52, [[Oxford University Press]]</ref> in logical proofs uses two valid [[Rule of replacement|rules of replacement]] to expand individual occurrences of certain [[logical connective]]s, within some [[Logical formula|formula]], into separate applications of those connectives across subformulas of the given formula. The rules are <math display="block">(P \land (Q \lor R)) \Leftrightarrow ((P \land Q) \lor (P \land R)) \qquad \text{ and } \qquad (P \lor (Q \land R)) \Leftrightarrow ((P \lor Q) \land (P \lor R))</math> where "<math>\Leftrightarrow</math>", also written <math>\,\equiv,\,</math> is a [[metalogic]]al [[Symbol (formal)|symbol]] representing "can be replaced in a proof with" or "is [[Logical equivalence|logically equivalent]] to". === Truth functional connectives === {{em|Distributivity}} is a property of some logical connectives of truth-functional [[propositional logic]]. The following logical equivalences demonstrate that distributivity is a property of particular connectives. The following are truth-functional [[Tautology (logic)|tautologies]]. <math display="block">\begin{alignat}{13} &(P &&\;\land &&(Q \lor R)) &&\;\Leftrightarrow\;&& ((P \land Q) &&\;\lor (P \land R)) && \quad\text{ Distribution of } && \text{ conjunction } && \text{ over } && \text{ disjunction } \\ &(P &&\;\lor &&(Q \land R)) &&\;\Leftrightarrow\;&& ((P \lor Q) &&\;\land (P \lor R)) && \quad\text{ Distribution of } && \text{ disjunction } && \text{ over } && \text{ conjunction } \\ &(P &&\;\land &&(Q \land R)) &&\;\Leftrightarrow\;&& ((P \land Q) &&\;\land (P \land R)) && \quad\text{ Distribution of } && \text{ conjunction } && \text{ over } && \text{ conjunction } \\ &(P &&\;\lor &&(Q \lor R)) &&\;\Leftrightarrow\;&& ((P \lor Q) &&\;\lor (P \lor R)) && \quad\text{ Distribution of } && \text{ disjunction } && \text{ over } && \text{ disjunction } \\ &(P &&\to &&(Q \to R)) &&\;\Leftrightarrow\;&& ((P \to Q) &&\to (P \to R)) && \quad\text{ Distribution of } && \text{ implication } && \text{ } && \text{ } \\ &(P &&\to &&(Q \leftrightarrow R)) &&\;\Leftrightarrow\;&& ((P \to Q) &&\leftrightarrow (P \to R)) && \quad\text{ Distribution of } && \text{ implication } && \text{ over } && \text{ equivalence } \\ &(P &&\to &&(Q \land R)) &&\;\Leftrightarrow\;&& ((P \to Q) &&\;\land (P \to R)) && \quad\text{ Distribution of } && \text{ implication } && \text{ over } && \text{ conjunction } \\ &(P &&\;\lor &&(Q \leftrightarrow R)) &&\;\Leftrightarrow\;&& ((P \lor Q) &&\leftrightarrow (P \lor R)) && \quad\text{ Distribution of } && \text{ disjunction } && \text{ over } && \text{ equivalence } \\ \end{alignat}</math> ;Double distribution: <math display="block">\begin{alignat}{13} &((P \land Q) &&\;\lor (R \land S)) &&\;\Leftrightarrow\;&& (((P \lor R) \land (P \lor S)) &&\;\land ((Q \lor R) \land (Q \lor S))) && \\ &((P \lor Q) &&\;\land (R \lor S)) &&\;\Leftrightarrow\;&& (((P \land R) \lor (P \land S)) &&\;\lor ((Q \land R) \lor (Q \land S))) && \\ \end{alignat}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)